The fractions [latex]\frac{2}{3}[/latex] and [latex]\frac{3}{2}[/latex] are related to each other in a special way. So are [latex]-\frac{10}{7}[/latex] and [latex]-\frac{7}{10}[/latex]. Do you see how? Besides looking like upside-down versions of one another, if we were to multiply these pairs of fractions, the product would be [latex]1[/latex].
[latex-display]\frac{2}{3}\cdot \frac{3}{2}=1\text{ and }-\frac{10}{7}\left(-\frac{7}{10}\right)=1[/latex-display]
Such pairs of numbers are called reciprocals.
Example
Find the reciprocal of each number. Then check that the product of each number and its reciprocal is [latex]1[/latex].
- [latex]\frac{4}{9}[/latex]
- [latex]-\frac{1}{6}[/latex]
- [latex]-\frac{14}{5}[/latex]
- [latex]7[/latex]
Solution:
To find the reciprocals, we keep the sign and invert the fractions.
1. |
|
Find the reciprocal of [latex]\frac{4}{9}[/latex] . |
The reciprocal of [latex]\frac{4}{9}[/latex] is [latex]\frac{9}{4}[/latex] . |
Check: |
|
Multiply the number and its reciprocal. |
[latex]\frac{4}{9}\cdot \frac{9}{4}[/latex] |
Multiply numerators and denominators. |
[latex]\frac{36}{36}[/latex] |
Simplify. |
[latex]1\quad\checkmark [/latex] |
2. |
|
Find the reciprocal of [latex]-\frac{1}{6}[/latex] . |
[latex]-\frac{6}{1}[/latex] |
Simplify. |
[latex]-6[/latex] |
Check: |
[latex]-\frac{1}{6}\cdot \left(-6\right)[/latex] |
|
[latex]1\quad\checkmark [/latex] |
3. |
|
Find the reciprocal of [latex]-\frac{14}{5}[/latex] . |
[latex]-\frac{5}{14}[/latex] |
Check: |
[latex]-\frac{14}{5}\cdot \left(-\frac{5}{14}\right)[/latex] |
|
[latex]\frac{70}{70}[/latex] |
|
[latex]1\quad\checkmark [/latex] |
4. |
|
Find the reciprocal of [latex]7[/latex] . |
|
Write [latex]7[/latex] as a fraction. |
[latex]\frac{7}{1}[/latex] |
Write the reciprocal of [latex]\frac{7}{1}[/latex] . |
[latex]\frac{1}{7}[/latex] |
Check: |
[latex]7\cdot \left(\frac{1}{7}\right)[/latex] |
|
[latex]1\quad\checkmark [/latex] |
Example
Fill in the chart for each fraction in the left column:
Number |
Opposite |
Absolute Value |
Reciprocal |
[latex]-\frac{3}{8}[/latex] |
[latex]\frac{1}{2}[/latex] |
[latex]\frac{9}{5}[/latex] |
[latex]-5[/latex] |
Answer:
Solution:
To find the opposite, change the sign. To find the absolute value, leave the positive numbers the same, but take the opposite of the negative numbers. To find the reciprocal, keep the sign the same and invert the fraction.
Number |
Opposite |
Absolute Value |
Reciprocal |
[latex]-\frac{3}{8}[/latex] |
[latex]\frac{3}{8}[/latex] |
[latex]\frac{3}{8}[/latex] |
[latex]-\frac{8}{3}[/latex] |
[latex]\frac{1}{2}[/latex] |
[latex]-\frac{1}{2}[/latex] |
[latex]\frac{1}{2}[/latex] |
[latex]2[/latex] |
[latex]\frac{9}{5}[/latex] |
[latex]-\frac{9}{5}[/latex] |
[latex]\frac{9}{5}[/latex] |
[latex]\frac{5}{9}[/latex] |
[latex]-5[/latex] |
[latex]5[/latex] |
[latex]5[/latex] |
[latex]-\frac{1}{5}[/latex] |
Try It
Fill in the chart for each number given:
Number |
Opposite |
Absolute Value |
Reciprocal |
[latex]-\frac{5}{8}[/latex] |
[latex]\frac{1}{4}[/latex] |
[latex]\frac{8}{3}[/latex] |
[latex]-8[/latex] |
Answer: