Solving Equations By Clearing Decimals
Learning Outcomes
- Determine the LCD of an equation that contains decimals
- Solve equations with decimals that require several steps
Example
Solve: [latex]0.8x - 5=7[/latex] Solution: The only decimal in the equation is [latex]0.8[/latex]. Since [latex]0.8=\Large\frac{8}{10}[/latex], the LCD is [latex]10[/latex]. We can multiply both sides by [latex]10[/latex] to clear the decimal.[latex]0.8x-5=7[/latex] | |
Multiply both sides by the LCD. | [latex]\color{red}{10}(0.8x-5)=\color{red}{10}(7)[/latex] |
Distribute. | [latex]10(0.8x)-10(5)=10(7)[/latex] |
Multiply, and notice, no more decimals! | [latex]8x-50=70[/latex] |
Add 50 to get all constants to the right. | [latex]8x-50\color{red}{+50}=70\color{red}{+50}[/latex] |
Simplify. | [latex]8x=120[/latex] |
Divide both sides by [latex]8[/latex]. | [latex]\Large\frac{8x}{\color{red}{8}}\normalsize =\Large\frac{120}{\color{red}{8}}[/latex] |
Simplify. | [latex]x=15[/latex] |
Check: Let [latex]x=15[/latex]. | |
[latex]0.8(\color{red}{15})-5\stackrel{\text{?}}{=}7[/latex][latex]12-5\stackrel{\text{?}}{=}7[/latex] [latex-display]7=7\quad\checkmark[/latex-display] |
Try it
[ohm_question]3555[/ohm_question]Example
Solve: [latex]0.06x+0.02=0.25x - 1.5[/latex]
Answer: Solution: Look at the decimals and think of the equivalent fractions. [latex-display]0.06=\Large\frac{6}{100}\normalsize ,0.02=\Large\frac{2}{100}\normalsize ,0.25=\Large\frac{25}{100}\normalsize ,1.5=1\Large\frac{5}{10}[/latex-display] Notice, the LCD is [latex]100[/latex]. By multiplying by the LCD we will clear the decimals.
[latex]0.06x+0.02=0.25x-1.5[/latex] | |
Multiply both sides by 100. | [latex]\color{red}{100}(0.06x+0.02)=\color{red}{100}(0.25x-1.5)[/latex] |
Distribute. | [latex]100(0.06x)+100(0.02)=100(0.25x)-100(1.5)[/latex] |
Multiply, and now no more decimals. | [latex]6x+2=25x-150[/latex] |
Collect the variables to the right. | [latex]6x\color{red}{-6x}+2=25x\color{red}{-6x}-150[/latex] |
Simplify. | [latex]2=19x-150[/latex] |
Collect the constants to the left. | [latex]2\color{red}{+150}=19x-150\color{red}{+150}[/latex] |
Simplify. | [latex]152=19x[/latex] |
Divide by [latex]19[/latex]. | [latex]\Large\frac{152}{\color{red}{19}}\normalsize =\Large\frac{19x}{\color{red}{19}}[/latex] |
Simplify. | [latex]8=x[/latex] |
Check: Let [latex]x=8[/latex]. | |
[latex]0.06(\color{red}{8})+0.02=0.25(\color{red}{8})-1.5[/latex][latex]0.48+0.02=2.00-1.5[/latex] [latex-display]0.50=0.50\quad\checkmark[/latex-display] |
Try it
[embed]Example
Solve: [latex]0.25x+0.05\left(x+3\right)=2.85[/latex]
Answer: Solution:
[latex]0.25x+0.05(x+3)=2.85[/latex] | |
Distribute first. | [latex]0.25x+0.05x+0.15=2.85[/latex] |
Combine like terms. | [latex]0.30x+0.15=2.85[/latex] |
To clear decimals, multiply by [latex]100[/latex]. | [latex]\color{red}{100}(0.30x+0.15)=\color{red}{100}(2.85)[/latex] |
Distribute. | [latex]30x+15=285[/latex] |
Subtract [latex]15[/latex] from both sides. | [latex]30x+15\color{red}{-15}=285\color{red}{-15}[/latex] |
Simplify. | [latex]30x=270[/latex] |
Divide by [latex]30[/latex]. | [latex]\Large\frac{30x}{\color{red}{30}}\normalsize =\Large\frac{270}{\color{red}{30}}[/latex] |
Simplify. | [latex]x=9[/latex] |
Check: Let [latex]x=9[/latex]. | |
[latex]0.25x+0.05(x+3)=2.85[/latex][latex]0.25(\color{red}{9})+0.05(\color{red}{9}+3)\stackrel{\text{?}}{=}2.85[/latex] [latex-display]2.25+0.05(12)\stackrel{\text{?}}{=}2.85[/latex-display] [latex-display]2.85=2.85\quad\checkmark[/latex-display] |
Try it
[ohm_question]140292[/ohm_question]Licenses & Attributions
CC licensed content, Original
- Solve a Linear Equation with Parentheses and Decimals 0.35(x-0.6)=0.2(x+1.2). Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
CC licensed content, Shared previously
- Ex: Solve a Linear Equation With Decimals and Variables on Both Sides. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
- Questions ID 71955. Authored by: Alyson Day. License: CC BY: Attribution. License terms: IMathAS Community License, CC-BY + GPL.
CC licensed content, Specific attribution
- Prealgebra. Provided by: OpenStax License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].