Evaluate and Simplify Algebraic Expressions
Learning Outcomes
- List the constants and variables in an algebraic expression.
- Evaluate an algebraic expression.
- Use an algebraic formula.
[latex]\begin{align}&\left(-3\right)^{5}=\left(-3\right)\cdot\left(-3\right)\cdot\left(-3\right)\cdot\left(-3\right)\cdot\left(-3\right) && x^{5}=x\cdot x\cdot x\cdot x\cdot x \\ &\left(2\cdot7\right)^{3}=\left(2\cdot7\right)\cdot\left(2\cdot7\right)\cdot\left(2\cdot7\right) && \left(yz\right)^{3}=\left(yz\right)\cdot\left(yz\right)\cdot\left(yz\right)\\ \text{ }\end{align}[/latex]
In each case, the exponent tells us how many factors of the base to use, whether the base consists of constants or variables.
Any variable in an algebraic expression may take on or be assigned different values. When that happens, the value of the algebraic expression changes. To evaluate an algebraic expression means to determine the value of the expression for a given value of each variable in the expression. Replace each variable in the expression with the given value, then simplify the resulting expression using the order of operations. If the algebraic expression contains more than one variable, replace each variable with its assigned value and simplify the expression as before.
Example: Describing Algebraic Expressions
List the constants and variables for each algebraic expression.- x + 5
- [latex]\frac{4}{3}\pi {r}^{3}[/latex]
- [latex]\sqrt{2{m}^{3}{n}^{2}}[/latex]
Answer:
Constants | Variables | |
---|---|---|
1. x + 5 | 5 | x |
2. [latex]\frac{4}{3}\pi {r}^{3}[/latex] | [latex]\frac{4}{3},\pi [/latex] | [latex]r[/latex] |
3. [latex]\sqrt{2{m}^{3}{n}^{2}}[/latex] | 2 | [latex]m,n[/latex] |
Try It
[embed]Example: Evaluating an Algebraic Expression at Different Values
Evaluate the expression [latex]2x - 7[/latex] for each value for x.- [latex]x=0[/latex]
- [latex]x=1[/latex]
- [latex]x=\dfrac{1}{2}[/latex]
- [latex]x=-4[/latex]
Answer:
- Substitute 0 for [latex]x[/latex].
[latex]\begin{align}2x-7 & = 2\left(0\right)-7 \\ & =0-7 \\ & =-7\end{align}[/latex]
- Substitute 1 for [latex]x[/latex].
[latex]\begin{align}2x-7 & = 2\left(1\right)-7 \\ & =2-7 \\ & =-5\end{align}[/latex]
- Substitute [latex]\dfrac{1}{2}[/latex] for [latex]x[/latex].
[latex]\begin{align}2x-7 & = 2\left(\frac{1}{2}\right)-7 \\ & =1-7 \\ & =-6\end{align}[/latex]
- Substitute [latex]-4[/latex] for [latex]x[/latex].
[latex]\begin{align}2x-7 & = 2\left(-4\right)-7 \\ & =-8-7 \\ & =-15\end{align}[/latex]
Try It
[embed]Example: Evaluating Algebraic Expressions
Evaluate each expression for the given values.- [latex]x+5[/latex] for [latex]x=-5[/latex]
- [latex]\frac{t}{2t - 1}[/latex] for [latex]t=10[/latex]
- [latex]\dfrac{4}{3}\pi {r}^{3}[/latex] for [latex]r=5[/latex]
- [latex]a+ab+b[/latex] for [latex]a=11,b=-8[/latex]
- [latex]\sqrt{2{m}^{3}{n}^{2}}[/latex] for [latex]m=2,n=3[/latex]
Answer:
- Substitute [latex]-5[/latex] for [latex]x[/latex].
[latex]\begin{align}x+5 &=\left(-5\right)+5 \\ &=0\end{align}[/latex]
- Substitute 10 for [latex]t[/latex].
[latex]\begin{align}\frac{t}{2t-1} & =\frac{\left(10\right)}{2\left(10\right)-1} \\ & =\frac{10}{20-1} \\ & =\frac{10}{19}\end{align}[/latex]
- Substitute 5 for [latex]r[/latex].
[latex]\begin{align}\frac{4}{3}\pi r^{3} & =\frac{4}{3}\pi\left(5\right)^{3} \\ & =\frac{4}{3}\pi\left(125\right) \\ & =\frac{500}{3}\pi\end{align}[/latex]
- Substitute 11 for [latex]a[/latex] and –8 for [latex]b[/latex].
[latex]\begin{align}a+ab+b & =\left(11\right)+\left(11\right)\left(-8\right)+\left(-8\right) \\ & =11-8-8 \\ & =-85\end{align}[/latex]
- Substitute 2 for [latex]m[/latex] and 3 for [latex]n[/latex].
[latex]\begin{align}\sqrt{2m^{3}n^{2}} & =\sqrt{2\left(2\right)^{3}\left(3\right)^{2}} \\ & =\sqrt{2\left(8\right)\left(9\right)} \\ & =\sqrt{144} \\ & =12\end{align}[/latex]
Be Careful when simplifying fractions!
Why does the fraction [latex]\dfrac{(25)}{3(25)-1}[/latex] not simplify to [latex]\dfrac{\cancel{(25)}}{3\cancel{(25)}-1}=\dfrac{1}{3-1}=\dfrac{1}{2}[/latex]? Using the inverse property of multiplication, we are permitted to "cancel out" common factors in the numerator and denominator such that [latex]\dfrac{a}{a}=1[/latex]. But be careful! We have no rule that allows us to cancel numbers in the top and bottom of a fractions that are contained in sums or differences. You'll see this idea reappear frequently throughout the course.Try It
[embed] [embed] [embed]Formulas
An equation is a mathematical statement indicating that two expressions are equal. The expressions can be numerical or algebraic. The equation is not inherently true or false, but only a proposition. The values that make the equation true, the solutions, are found using the properties of real numbers and other results. For example, the equation [latex]2x+1=7[/latex] has the unique solution [latex]x=3[/latex] because when we substitute 3 for [latex]x[/latex] in the equation, we obtain the true statement [latex]2\left(3\right)+1=7[/latex]. A formula is an equation expressing a relationship between constant and variable quantities. Very often the equation is a means of finding the value of one quantity (often a single variable) in terms of another or other quantities. One of the most common examples is the formula for finding the area [latex]A[/latex] of a circle in terms of the radius [latex]r[/latex] of the circle: [latex]A=\pi {r}^{2}[/latex]. For any value of [latex]r[/latex], the area [latex]A[/latex] can be found by evaluating the expression [latex]\pi {r}^{2}[/latex].Example: Using a Formula
A right circular cylinder with radius [latex]r[/latex] and height [latex]h[/latex] has the surface area [latex]S[/latex] (in square units) given by the formula [latex]S=2\pi r\left(r+h\right)[/latex]. Find the surface area of a cylinder with radius 6 in. and height 9 in. Leave the answer in terms of [latex]\pi[/latex]. Right circular cylinder
Answer: Evaluate the expression [latex]2\pi r\left(r+h\right)[/latex] for [latex]r=6[/latex] and [latex]h=9[/latex].
[latex]\begin{align}S&=2\pi r\left(r+h\right) \\ & =2\pi\left(6\right)[\left(6\right)+\left(9\right)] \\ & =2\pi\left(6\right)\left(15\right) \\ & =180\pi\end{align}[/latex]
The surface area is [latex]180\pi [/latex] square inches.
Try It
Figure 4
A photograph with length L and width W is placed in a matte of width 8 centimeters (cm). The area of the matte (in square centimeters, or cm2) is found to be [latex]A=\left(L+16\right)\left(W+16\right)-L\cdot W[/latex]. Find the area of a matte for a photograph with length 32 cm and width 24 cm.
Answer: 1,152 cm2
[embed]Try it
Click on the black dot in the graph below to explore how changing length or width changes the area of a rectangle. https://www.desmos.com/calculator/eq1cow0lcjSimplify Algebraic Expressions
Sometimes we can simplify an algebraic expression to make it easier to evaluate or to use in some other way. To do so, we use the properties of real numbers. We can use the same properties in formulas because they contain algebraic expressions.Recall: operations on Fractions
When simplifying algebraic expressions, we may sometimes need to add, subtract, simplify, multiply, or divide fractions. It is important to be able to do these operations on the fractions without converting them to decimals. To multiply fractions, multiply the numerators and place them over the product of the denominators.[latex]\dfrac{a}{b}\cdot\dfrac{c}{d} = \dfrac {ac}{bd}[/latex]
To divide fractions, multiply the first by the reciprocal of the second.[latex]\dfrac{a}{b}\div\dfrac{c}{d}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}[/latex]
To simplify fractions, find common factors in the numerator and denominator that cancel.[latex]\dfrac{24}{32}=\dfrac{2\cdot2\cdot2\cdot3}{2\cdot2\cdot2\cdot2\cdot2}=\dfrac{3}{2\cdot2}=\dfrac{3}{4}[/latex]
To add or subtract fractions, first rewrite each fraction as an equivalent fraction such that each has a common denominator, then add or subtract the numerators and place the result over the common denominator.[latex]\dfrac{a}{b}\pm\dfrac{c}{d} = \dfrac{ad \pm bc}{bd}[/latex]
Example: Simplifying Algebraic Expressions
Simplify each algebraic expression.- [latex]3x - 2y+x - 3y - 7[/latex]
- [latex]2r - 5\left(3-r\right)+4[/latex]
- [latex]\left(4t-\dfrac{5}{4}s\right)-\left(\dfrac{2}{3}t+2s\right)[/latex]
- [latex]2mn - 5m+3mn+n[/latex]
Answer:
- [latex]\begin{align}3x-2y+x-3y-7 & =3x+x-2y-3y-7 && \text{Commutative property of addition} \\ & =4x-5y-7 && \text{Simplify} \\ \text{ }\end{align}[/latex]
- [latex]\begin{align}2r-5\left(3-r\right)+4 & =2r-15+5r+4 && \text{Distributive property}\\&=2r+5r-15+4 && \text{Commutative property of addition} \\ & =7r-11 && \text{Simplify} \\ \text{ }\end{align}[/latex]
- [latex]\begin{align} 4t-\frac{5}{4}s -\left(\frac{2}{3}t+2s\right) &=4t-\frac{5}{4}s-\frac{2}{3}t-2s &&\text{Distributive property}\\&=4t-\frac{2}{3}t-\frac{5}{4}s-2s && \text{Commutative property of addition}\\&=\frac{12}{3}t-\frac{2}{3}t-\frac{5}{4}s-\frac{8}{4}s && \text{Common Denominators}\\ & =\frac{10}{3}t-\frac{13}{4}s && \text{Simplify} \\ \text{ }\end{align}[/latex]
- [latex]\begin{align}mn-5m+3mn+n & =2mn+3mn-5m+n && \text{Commutative property of addition} \\ & =5mn-5m+n && \text{Simplify}\end{align}[/latex]
Try It
[embed] [embed] [embed]Example: Simplifying a Formula
A rectangle with length [latex]L[/latex] and width [latex]W[/latex] has a perimeter [latex]P[/latex] given by [latex]P=L+W+L+W[/latex]. Simplify this expression.Answer:
[latex]\begin{align}&P=L+W+L+W \\ &P=L+L+W+W && \text{Commutative property of addition} \\ &P=2L+2W && \text{Simplify} \\ &P=2\left(L+W\right) && \text{Distributive property}\end{align}[/latex]
Try It
If the amount [latex]P[/latex] is deposited into an account paying simple interest [latex]r[/latex] for time [latex]t[/latex], the total value of the deposit [latex]A[/latex] is given by [latex]A=P+Prt[/latex]. Simplify the expression. (This formula will be explored in more detail later in the course.)Answer: [latex-display]A=P\left(1+rt\right)[/latex-display]
Licenses & Attributions
CC licensed content, Original
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
- Area of a Rectangle Interactive. Authored by: Lumen Learning. Located at: https://www.desmos.com/calculator/eq1cow0lcj. License: Public Domain: No Known Copyright.
CC licensed content, Shared previously
- Quiestion ID 3616. Authored by: triplett,shawn. License: Other. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 1976, 1980. Authored by: Morales, Lawrence. License: Other. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 483. Authored by: Eldridge,Jeff, mb Sousa,James. License: Other. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 92388. Authored by: Jenck,Michael for Lumen Learning. License: Other. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 109700, 110263, 109667. Authored by: Day, Alyson. License: Other. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 50617. Authored by: Gardner,Brenda. License: Other. License terms: IMathAS Community License CC-BY + GPL.
- College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].
- Evaluating Algebraic Expressions. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
CC licensed content, Specific attribution
- College Algebra. Provided by: OpenStax Authored by: OpenStax College Algebra. Located at: https://cnx.org/contents/[email protected]:1/Preface. License: CC BY: Attribution.