O.04: Section 2
Section 2: Avoiding confounded parameters—don’t use two parameters to control the same thing
Models formed by adding two basic models together are very useful, but in some cases a problem arises because both models have parameters that control the same thing (e.g., vertical offset). When this is true, there is not any “best-fit” solution for these parameters, since any combination of vertical-offset values that gives a good fit could be replaced by other values which add up to the same thing. In such a situation, what values Solver will find for these “confounded” parameters depends unpredictably on their initial settings. This problem can be avoided by eliminating one of the confounded parameters. If the compound model is the sum of a linear model and a sinusoidal model, for example, the linear intercept parameter and the sinusoidal baseline parameter both control the vertical offset. In this case, it would be best to leave out the sinusoidal baseline parameter (use only wavelength, amplitude, and phase), because the natural way to think about data of this kind is as a straight line with sinusoidal deviations.| Line+Sinusoidal Parameters | |
| 0.837518 | Intercept |
| 0.004593 | Slope |
| 12.14912 | Wavelength |
| 0.143756 | Amplitude |
| 8.580468 | Phase offset |
| Goodness of fit of this model | |
| 0.006831 | Sum of squared dev. |
| 0.016209 | Standard deviation |
Answers: The fitting results show that the multi-year trend in the bias is 0.004593 pounds per month (the linear slope parameter), which is about 0.055 pounds per year. Evaluating the model at 39 months (8 months after the last data value) gives a prediction for bias at that time of about 0.945 pounds.
Note that the predicted bias value at 39 months is lower than the bias shown in the last data value, indicating that between these times the seasonal variation is larger than the long-term upward trend. Another interesting aspect of this problem is that simply fitting a linear model to the data would not have given good results; since the 2½-year pattern includes three upward-sloping segments and only two downward-sloping segments, a plain linear model would give a result more than 20% too large for the long-term trend.
Confounded-parameter problems can usually be avoided by thinking about the meaning of each parameter in the context of the data. If the information it conveys is already being supplied by an earlier parameter, leave it out. In the example below, a three-stage process (with two transitions) can be modeled by adding two logistic models. Since a logistic model has four parameters (rate, center, height, and floor), one might expect eight parameters in the compound model. But are any of these parameters redundant?
Example 4: The data to the right record the depth of the cut of a milling machine during a portion of a production run. Fit an appropriate model to the data to make estimates of the time, to the nearest millisecond, of the midpoint of each transition.
Solution:
Step transitions can be modeled by logistic functions; for this data, the sum of two logistic functions would be suitable.
The horizontal asymptotes in a logistic graph are controlled by the floor and height parameters. But in this sum-of-logistics model, floor2 (the floor of the second logistic) will equal floor1+height1, and does not need a separate parameter in the model.
In this case, it appears that the model can be further simplified by using the same height and rate parameters for both transitions, leaving the model with five parameters: floor, height, rate, center1 ,and center2, (use cells G3–G7 for these). |
|
| Answers: The best-fit results produced by Solver are shown to the right. The parameters relevant to the question asked are center1 and center2 , so the times of the middle of the two transitions are 20.837 seconds and 22.105 seconds. |
|
Licenses & Attributions
CC licensed content, Shared previously
- Mathematics for Modeling. Authored by: Mary Parker and Hunter Ellinger. License: CC BY: Attribution.

