F1.02: Examples 4-5
Example 4. Negative numbers and the operation of subtraction.- [latex]8-6[/latex]
- [latex]-6+8[/latex]
Evaluate each expression | Enter this | Why? |
[latex]{{3}^{2x}}[/latex], where [latex]x=3[/latex] | 3 ^ (2*3) = or [latex]3\,\,{{y}^{x}}(2*3)=[/latex] | In the original expression, the placement of the symbols indicates that the exponent is 2 times x. But when we have to just enter symbols one after the other – on the same line – we have to use parentheses to clarify what is in the exponent. |
[latex]\frac{{{x}^{2}}-6x}{4x+2}[/latex], where [latex]x=3[/latex] | (3^2-6*3)/(4*3+2) = or (32-6*3)/(4*3+2) = | In the original expression, the placement of the symbols indicates that the entire numerator is divided by the entire denominator. But when we have to just enter symbols one after the other – on the same line – we have to use parentheses to clarify what is to be divided by what. |
[latex]\sqrt{4x+13}[/latex], where | (4*3+13) = OR 4*3+13 = [latex]\sqrt{{}}[/latex] = | In the original expression, the fact that the expression was completely under the square root symbol made it clear. In the calculator, we have to use parentheses to say that. |
[latex]{{3}^{2x}}[/latex], where [latex]x=3[/latex] | [latex]\begin{align}&\,\,\,\,{{3}^{2\cdot3}}={{3}^{6}}=3\cdot3\cdot3\cdot3\cdot3\cdot3\\&=9\cdot3\cdot3\cdot3\cdot3=27\cdot3\cdot3\cdot3=81\cdot3\cdot3=243\cdot3=729\\\end{align}[/latex] |
[latex]\frac{{{x}^{2}}-6x}{4x+2}[/latex], where [latex]x=3[/latex] | [latex-display]\frac{{{3}^{2}}-6\cdot3}{4\cdot3+2}=\frac{9-18}{12+2}=\frac{-9}{14}[/latex-display] Now use your calculator to find this is –0.642857 |
[latex]\sqrt{4x+13}[/latex], where [latex]x=3[/latex] | [latex]\sqrt{4x+13}=\sqrt{4\cdot3+13}=\sqrt{25}=5[/latex] |
Evaluate each expression | Enter this |
[latex]{{3}^{2x}}[/latex], where [latex]x=3[/latex] | 3 ^ (2*3) = 729 OR [latex]3\,\,{{y}^{x}}(2*3)=[/latex] 729 |
[latex]\frac{{{x}^{2}}-6x}{4x+2}[/latex], where [latex]x=3[/latex] | (3^2-6*3)/(4*3+2) = –0.642857 OR (32-6*3)/(4*3+2) = –0.642857 |
[latex]\sqrt{4x+13}[/latex], where [latex]x=3[/latex] | [latex]\sqrt{{}}[/latex](4*3+13) = 5 OR 4*3+13 = [latex]\sqrt{{}}[/latex] = 5 |
Licenses & Attributions
CC licensed content, Shared previously
- Mathematics for Modeling. Authored by: Mary Parker and Hunter Ellinger. License: CC BY: Attribution.