B1.04: Section 3
Example 1
Solve [latex]\frac{14}{3}=\frac{8}{x}[/latex]. Discussion: Sometimes students learn to solve problems like this one by “cross-multiplying.” That is correct. However, most math teachers prefer to think of solving this by multiplying both sides by the same thing—in this case the product of the two denominators. The result is the same. Both methods are shown below.Answer:
Solution Method: Cross-multiply: | Alternate Solution Method: Multiply by common denominator | Check: |
[latex]\begin{align}&\frac{14}{3}=\frac{8}{x}\\&14x=3\cdot8\\&14x=24\\&\frac{14x}{14}=\frac{24}{14}\\&x=1.7143\\\end{align}[/latex] | [latex-display]\begin{align}&\frac{14}{3}=\frac{8}{x}\\&3\cdot{x}\cdot\frac{14}{3}=3\cdot{x}\cdot\frac{8}{x}\\&\frac{3}{3}\cdot{x}\cdot14=\frac{x}{x}\cdot3\cdot8\\&1\cdot{x}\cdot14=1\cdot3\cdot8\\\end{align}[/latex-display] [latex]\begin{align}&14x=24\\&\frac{14x}{14}=\frac{24}{14}\\&x=1.7143\\\end{align}[/latex] | [latex-display]\begin{align}&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{14}{3}=\frac{8}{x}\\&\,\,\,\,\,\,\,\,\,\,\,\,\frac{14}{3}\,\,\,?=?\,\,\,\frac{8}{1.7143}\\&4.66667\,\,\,?=?\,\,\,4.66663\\\end{align}[/latex-display] Here, the two sides aren’t exactly equal. But that isn’t surprising, because we rounded the final answer to the original problem, so we don’t expect the two sides here to be exactly equal. |
Example 2
Solve [latex]\frac{7}{33}=\frac{x}{5}[/latex] Discussion: Here the variable isn’t in the denominator, but this illustrates that the basic principle of multiplying both sides by the same non-zero expression works here too.Answer:
Solution Method: Cross-multiply: | Alternate Solution Method: Multiply by common denominator | Check: |
[latex]\begin{align}&\frac{7}{33}=\frac{x}{5}\\&33x=7\cdot5\\&33x=35\\&\frac{33x}{33}=\frac{35}{33}\\&x=1.0606\\\end{align}[/latex] | [latex]\begin{align}&\frac{7}{33}=\frac{x}{5}\\&33\cdot5\cdot\frac{7}{33}=33\cdot5\cdot\frac{x}{5}\\&\frac{33}{33}\cdot5\cdot7=\frac{5}{5}\cdot33\cdot{x}\\&1\cdot{x}\cdot35=1\cdot33\cdot{x}\\&33x=35\\&\frac{33x}{33}=\frac{35}{33}\\&x=1.0606\\\end{align}[/latex] | [latex]\begin{align}&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{7}{33}=\frac{x}{5}\\&\,\,\,\,\,\,\,\,\,\,\,\,\frac{7}{33}\,\,\,?=?\,\,\,\frac{1.0606}{5}\\&\,\,\,0.21212\,\,\,\,=\,\,\,0.21212\\\end{align}[/latex] |
Example 3
Solve [latex]\frac{12}{x}=6[/latex]Answer:
Solution Method: Cross-multiply: | Solution Method: Multiply by common denominator | Check: |
[latex]\begin{align}&\frac{12}{x}=\frac{6}{1}\\&6x=12\\&x={}^{12}\!\!\diagup\!\!{}_{6}\;=2\\\end{align}[/latex] | [latex]\begin{align}&\frac{12}{x}=6\\&x\cdot\frac{12}{x}=x\cdot6\\&\frac{x}{x}\cdot12=6x\\&12=6x\\&x={}^{12}\!\!\diagup\!\!{}_{6}\;=2\\\end{align}[/latex] | [latex]\begin{align}&\frac{12}{x}=6\\&\,\frac{12}{2}\,\,=\,6\\\end{align}[/latex] |
Example 4
Find a formula for h (that is, solve for h.) [latex]\frac{h}{36}=\frac{m}{k}[/latex].Answer:
Solution Method: Cross-multiply: | Alternate Solution Method: Multiply by common denominator | Check: |
[latex]\begin{align}&\frac{h}{36}=\frac{m}{k}\\&hk=36m\\&\frac{hk}{k}=\frac{36m}{k}\\&h=\frac{36m}{k}\end{align}[/latex] | [latex]\begin{align}&\frac{h}{36}=\frac{m}{k}\\&36k\frac{h}{36}=36k\frac{m}{k}\\&hk=36m\\&\frac{hk}{k}=\frac{36m}{k}\\&h=\frac{36m}{k}\end{align}[/latex] | [latex-display]\frac{h}{36}=\frac{m}{k}[/latex-display] Substitute [latex]\begin{align}&\frac{\frac{36m}{k}}{36}=\\&\frac{36\cdot{m}}{k}\div36=\\&\frac{36\cdot{m}}{k}\cdot\frac{1}{36}=\\&=\frac{m}{k}\end{align}[/latex] |
Example 5
Find a formula for d (that is, solve for d.) [latex]\frac{a}{0.37}=\frac{r}{d}[/latex].Answer:
Solution Method: Cross-multiply: | Alternate Solution Method: Multiply by common denominator | Check: |
[latex]\begin{align}&\frac{a}{0.37}=\frac{r}{d}\\&0.37r={a}\cdot{d}\\&d\frac{0.37r}{a}=\frac{a\cdot{d}}{a}\\&\frac{0.37r}{a}=d\\&d=\frac{0.37r}{a}\end{align}[/latex] | [latex]\begin{align}&\frac{a}{0.37}=\frac{r}{d}\\&0.37d\cdot\frac{a}{0.37}=0.37d\cdot\frac{r}{d}\\&d\cdot{a}=0.37r\\&\frac{d\cdot{a}}{a}=\frac{0.37r}{a}\\&d=\frac{0.37r}{a}\end{align}[/latex] | [latex-display]\frac{a}{0.37}=\frac{r}{d}[/latex-display] Substitute for d on the right. [latex]\begin{align}&\frac{r}{d}=\frac{r}{\frac{0.37r}{a}}\\&=r\div\frac{0.37r}{a}\\&=\frac{r}{1}\div\frac{0.37r}{a}\\&=\frac{r}{1}\cdot\frac{a}{0.37r}\\&=\frac{ra}{0.37r}\\&=\frac{a}{0.37}\end{align}[/latex] |
Licenses & Attributions
CC licensed content, Shared previously
- Mathematics for Modeling. Authored by: Mary Parker and Hunter Ellinger. License: CC BY: Attribution.