Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(arcsin(1/(sqrt(5)))+arctan(1/3))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(arcsin(5​1​)+arctan(31​))

Solution

22​​
+1
Decimal
0.70710…
Solution steps
cos(arcsin(5​1​)+arctan(31​))
cos(arcsin(5​1​)+arctan(31​))=cos(arcsin(55​​)+arctan(31​))
cos(arcsin(5​1​)+arctan(31​))
5​1​=55​​
5​1​
Multiply by the conjugate 5​5​​=5​5​1⋅5​​
1⋅5​=5​
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=55​​
=cos(arcsin(55​​)+arctan(31​))
=cos(arcsin(55​​)+arctan(31​))
Rewrite using trig identities:cos(arcsin(55​​))cos(arctan(31​))−sin(arcsin(55​​))sin(arctan(31​))
cos(arcsin(55​​)+arctan(31​))
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(arcsin(55​​))cos(arctan(31​))−sin(arcsin(55​​))sin(arctan(31​))
=cos(arcsin(55​​))cos(arctan(31​))−sin(arcsin(55​​))sin(arctan(31​))
Rewrite using trig identities:cos(arcsin(55​​))=525​​
cos(arcsin(55​​))
Rewrite using trig identities:cos(arcsin(55​​))=1−(55​​)2​
Use the following identity: cos(arcsin(x))=1−x2​
=1−(55​​)2​
=1−(55​​)2​
Simplify=525​​
Rewrite using trig identities:cos(arctan(31​))=10310​​
cos(arctan(31​))
Rewrite using trig identities:cos(arctan(31​))=1+(31​)21+(31​)2​​
Use the following identity: cos(arctan(x))=1+x21+x2​​
=1+(31​)21+(31​)2​​
=1+(31​)21+(31​)2​​
Simplify=10310​​
Rewrite using trig identities:sin(arcsin(55​​))=55​​
Use the following identity: sin(arcsin(x))=x
=55​​
Rewrite using trig identities:sin(arctan(31​))=1010​​
sin(arctan(31​))
Rewrite using trig identities:sin(arctan(31​))=1+(31​)2(31​)1+(31​)2​​
Use the following identity: sin(arctan(x))=1+x2x1+x2​​
=1+(31​)2(31​)1+(31​)2​​
=1+(31​)231​1+(31​)2​​
Simplify=1010​​
=525​​⋅10310​​−55​​⋅1010​​
Simplify 525​​⋅10310​​−55​​⋅1010​​:22​​
525​​⋅10310​​−55​​⋅1010​​
525​​⋅10310​​=532​​
525​​⋅10310​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=5⋅1025​⋅310​​
Multiply the numbers: 2⋅3=6=5⋅1065​10​​
Multiply the numbers: 5⋅10=50=5065​10​​
Cancel the common factor: 2=2535​10​​
Simplify 35​10​:3⋅52​
35​10​
Factor integer 10=5⋅2=35​5⋅2​
Apply radical rule: 5⋅2​=5​2​=35​5​2​
Apply radical rule: a​a​=a5​5​=5=3⋅52​
=253⋅52​​
Multiply the numbers: 3⋅5=15=25152​​
Cancel the common factor: 5=532​​
55​​⋅1010​​=102​​
55​​⋅1010​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=5⋅105​10​​
Multiply the numbers: 5⋅10=50=505​10​​
Simplify 5​10​:52​
5​10​
Factor integer 10=5⋅2=5​5⋅2​
Apply radical rule: 5⋅2​=5​2​=5​5​2​
Apply radical rule: a​a​=a5​5​=5=52​
=5052​​
Cancel the common factor: 5=102​​
=532​​−102​​
Least Common Multiplier of 5,10:10
5,10
Least Common Multiplier (LCM)
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Prime factorization of 10:2⋅5
10
10divides by 210=5⋅2=2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅5
Multiply each factor the greatest number of times it occurs in either 5 or 10=5⋅2
Multiply the numbers: 5⋅2=10=10
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 10
For 532​​:multiply the denominator and numerator by 2532​​=5⋅232​⋅2​=1062​​
=1062​​−102​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1062​−2​​
Add similar elements: 62​−2​=52​=1052​​
Cancel the common factor: 5=22​​
=22​​

Popular Examples

sin(arcsin(5/13)+arccos(-3/5))sin(pi/2)-24sin((11pi)/6)6/(cos(37))cos(pi)-sin(pi/2)

Frequently Asked Questions (FAQ)

  • What is the value of cos(arcsin(1/(sqrt(5)))+arctan(1/3)) ?

    The value of cos(arcsin(1/(sqrt(5)))+arctan(1/3)) is (sqrt(2))/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024