Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan((3pi)/4+pi/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(43π​+6π​)

Solution

3​−2
+1
Decimal
−0.26794…
Solution steps
tan(43π​+6π​)
Rewrite using trig identities:1−tan(43π​)tan(6π​)tan(43π​)+tan(6π​)​
tan(43π​+6π​)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(43π​)tan(6π​)tan(43π​)+tan(6π​)​
=1−tan(43π​)tan(6π​)tan(43π​)+tan(6π​)​
Rewrite using trig identities:tan(43π​)=−1
tan(43π​)
Rewrite using trig identities:cos(43π​)sin(43π​)​
tan(43π​)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(43π​)sin(43π​)​
=cos(43π​)sin(43π​)​
Use the following trivial identity:sin(43π​)=22​​
sin(43π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
Use the following trivial identity:cos(43π​)=−22​​
cos(43π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−22​​
=−22​​22​​​
Simplify −22​​22​​​:−1
−22​​22​​​
Apply the fraction rule: −ba​=−ba​=−22​​22​​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=−22​2​⋅2​
Cancel the common factor: 2​=−22​
Cancel the common factor: 2=−1
=−1
Use the following trivial identity:tan(6π​)=33​​
tan(6π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1−(−1)33​​−1+33​​​
Simplify 1−(−1)33​​−1+33​​​:3​−2
1−(−1)33​​−1+33​​​
Apply rule −(−a)=a=1+1⋅33​​−1+33​​​
Multiply: 1⋅33​​=33​​=1+33​​−1+33​​​
Join 1+33​​:3​3​+1​
1+33​​
Convert element to fraction: 1=31⋅3​=31⋅3​+33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3+3​​
Multiply the numbers: 1⋅3=3=33+3​​
Factor 3+3​:3​(3​+1)
3+3​
3=3​3​=3​3​+3​
Factor out common term 3​=3​(3​+1)
=33​(3​+1)​
Cancel 33​(3​+1)​:3​3​+1​
33​(3​+1)​
Apply radical rule: na​=an1​3​=321​=3321​(1+3​)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​+1​
Subtract the numbers: 1−21​=21​=321​3​+1​
Apply radical rule: an1​=na​321​=3​=3​3​+1​
=3​3​+1​
=3​3​+1​−1+33​​​
Join −1+33​​:3​−3​+1​
−1+33​​
Convert element to fraction: 1=31⋅3​=−31⋅3​+33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3−1⋅3+3​​
Multiply the numbers: 1⋅3=3=3−3+3​​
Factor −3+3​:3​(−3​+1)
−3+3​
3=3​3​=−3​3​+3​
Factor out common term 3​=3​(−3​+1)
=33​(−3​+1)​
Cancel 33​(−3​+1)​:3​−3​+1​
33​(−3​+1)​
Apply radical rule: na​=an1​3​=321​=3321​(1−3​)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​−3​+1​
Subtract the numbers: 1−21​=21​=321​−3​+1​
Apply radical rule: an1​=na​321​=3​=3​−3​+1​
=3​−3​+1​
=3​3​+1​3​−3​+1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=3​(3​+1)(−3​+1)3​​
Cancel the common factor: 3​=3​+1−3​+1​
Rationalize 3​+1−3​+1​:3​−2
3​+1−3​+1​
Multiply by the conjugate 3​−13​−1​=(3​+1)(3​−1)(−3​+1)(3​−1)​
(−3​+1)(3​−1)=23​−4
(−3​+1)(3​−1)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=−3​,b=1,c=3​,d=−1=(−3​)3​+(−3​)(−1)+1⋅3​+1⋅(−1)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=−3​3​+1⋅3​+1⋅3​−1⋅1
Simplify −3​3​+1⋅3​+1⋅3​−1⋅1:23​−4
−3​3​+1⋅3​+1⋅3​−1⋅1
Add similar elements: 1⋅3​+1⋅3​=23​=−3​3​+23​−1⋅1
Apply radical rule: a​a​=a3​3​=3=−3+23​−1⋅1
Multiply the numbers: 1⋅1=1=−3+23​−1
Subtract the numbers: −3−1=−4=23​−4
=23​−4
(3​+1)(3​−1)=2
(3​+1)(3​−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=3​,b=1=(3​)2−12
Simplify (3​)2−12:2
(3​)2−12
Apply rule 1a=112=1=(3​)2−1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3−1
Subtract the numbers: 3−1=2=2
=2
=223​−4​
Factor 23​−4:2(3​−2)
23​−4
Rewrite as=23​−2⋅2
Factor out common term 2=2(3​−2)
=22(3​−2)​
Divide the numbers: 22​=1=3​−2
=3​−2
=3​−2

Popular Examples

5tan(45)cos((13pi)/9)8/(tan(51))arctan(50/16)sin(5.5)

Frequently Asked Questions (FAQ)

  • What is the value of tan((3pi)/4+pi/6) ?

    The value of tan((3pi)/4+pi/6) is sqrt(3)-2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024