Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(75)+sin(15))/(cos(105)-cos(15))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(105∘)−cos(15∘)sin(75∘)+sin(15∘)​

Solution

−1
Solution steps
cos(105∘)−cos(15∘)sin(75∘)+sin(15∘)​
Rewrite using trig identities:sin(75∘)+sin(15∘)=2sin(45∘)cos(30∘)
sin(75∘)+sin(15∘)
Use the Sum to Product identity: sin(s)+sin(t)=2sin(2s+t​)cos(2s−t​)=2sin(275∘+15∘​)cos(275∘−15∘​)
Simplify=2sin(45∘)cos(30∘)
=cos(105∘)−cos(15∘)2sin(45∘)cos(30∘)​
Use the following trivial identity:sin(45∘)=22​​
sin(45∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
Use the following trivial identity:cos(30∘)=23​​
cos(30∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Rewrite using trig identities:cos(105∘)=42​(1−3​)​
cos(105∘)
Rewrite using trig identities:cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
cos(105∘)
Write cos(105∘)as cos(60∘+45∘)=cos(60∘+45∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
=cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
Use the following trivial identity:cos(60∘)=21​
cos(60∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
Use the following trivial identity:cos(45∘)=22​​
cos(45∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(60∘)=23​​
sin(60∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
Use the following trivial identity:sin(45∘)=22​​
sin(45∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=21​⋅22​​−23​​⋅22​​
Simplify 21​⋅22​​−23​​⋅22​​:42​(1−3​)​
21​⋅22​​−23​​⋅22​​
Factor out common term 22​​=22​​(21​−23​​)
21​−23​​=21−3​​
21​−23​​
Apply rule ca​±cb​=ca±b​=21−3​​
=22​​⋅21−3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅2(1−3​)2​​
Multiply the numbers: 2⋅2=4=42​(1−3​)​
=42​(1−3​)​
Rewrite using trig identities:cos(15∘)=46​+2​​
cos(15∘)
Rewrite using trig identities:cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
cos(15∘)
Write cos(15∘)as cos(45∘−30∘)=cos(45∘−30∘)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
=cos(45∘)cos(30∘)+sin(45∘)sin(30∘)
Use the following trivial identity:cos(45∘)=22​​
cos(45∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:cos(30∘)=23​​
cos(30∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Use the following trivial identity:sin(45∘)=22​​
sin(45∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
Use the following trivial identity:sin(30∘)=21​
sin(30∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​+22​​⋅21​
Simplify 22​​⋅23​​+22​​⋅21​:46​+2​​
22​​⋅23​​+22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multiply the numbers: 2⋅2=4=42​3​​
Simplify 2​3​:6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multiply: 2​⋅1=2​=2⋅22​​
Multiply the numbers: 2⋅2=4=42​​
=46​​+42​​
Apply rule ca​±cb​=ca±b​=46​+2​​
=46​+2​​
=42​(1−3​)​−46​+2​​2⋅22​​⋅23​​​
Simplify 42​(1−3​)​−46​+2​​2⋅22​​⋅23​​​:−1
42​(1−3​)​−46​+2​​2⋅22​​⋅23​​​
Combine the fractions 42​(1−3​)​−46​+2​​:42​(1−3​)−(6​+2​)​
Apply rule ca​±cb​=ca±b​=42​(1−3​)−(6​+2​)​
=42​(1−3​)−(6​+2​)​2⋅22​​⋅23​​​
Apply the fraction rule: cb​a​=ba⋅c​=2​(1−3​)−(6​+2​)2⋅22​​⋅23​​⋅4​
Multiply the numbers: 2⋅4=8=2​(1−3​)−(6​+2​)8⋅22​​⋅23​​​
Multiply 8⋅22​​⋅23​​:26​
8⋅22​​⋅23​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=2⋅22​3​⋅8​
Multiply the numbers: 2⋅2=4=482​3​​
Divide the numbers: 48​=2=22​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=22⋅3​
Multiply the numbers: 2⋅3=6=26​
=2​(1−3​)−(6​+2​)26​​
Expand 2​(1−3​)−(6​+2​):−26​
2​(1−3​)−(6​+2​)
Expand 2​(1−3​):2​−6​
2​(1−3​)
Apply the distributive law: a(b−c)=ab−aca=2​,b=1,c=3​=2​⋅1−2​3​
=1⋅2​−2​3​
Simplify 1⋅2​−2​3​:2​−6​
1⋅2​−2​3​
1⋅2​=2​
1⋅2​
Multiply: 1⋅2​=2​=2​
2​3​=6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=2​−6​
=2​−6​
=2​−6​−(6​+2​)
−(6​+2​):−6​−2​
−(6​+2​)
Distribute parentheses=−(6​)−(2​)
Apply minus-plus rules+(−a)=−a=−6​−2​
=2​−6​−6​−2​
Simplify 2​−6​−6​−2​:−26​
2​−6​−6​−2​
Add similar elements: 2​−2​=0=−6​−6​
Add similar elements: −6​−6​=−26​=−26​
=−26​
=−26​26​​
Apply the fraction rule: −ba​=−ba​=−26​26​​
Apply rule aa​=1=−1
=−1

Popular Examples

sec^2(8)arccot(-5)cos(180-60)cot(pi/(18))7/(cos(65))

Frequently Asked Questions (FAQ)

  • What is the value of (sin(75)+sin(15))/(cos(105)-cos(15)) ?

    The value of (sin(75)+sin(15))/(cos(105)-cos(15)) is -1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024