Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2pii)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2πi)

Solution

2e2πe4π+1​
+1
Decimal
267.74676…
Solution steps
cos(2πi)
Rewrite using trig identities:cos(0)cosh(2π)−isin(0)sinh(2π)
cos(2πi)
Use the following identity: cos(a+bi)=cos(a)cosh(b)−isin(a)sinh(b)=cos(0)cosh(2π)−isin(0)sinh(2π)
=cos(0)cosh(2π)−isin(0)sinh(2π)
Use the following trivial identity:cos(0)=1
cos(0)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=1
Rewrite using trig identities:cosh(2π)=2e2πe4π+1​
cosh(2π)
Use the Hyperbolic identity: cosh(x)=2ex+e−x​=2e2π+e−2π​
2e2π+e−2π​=2e2πe4π+1​
2e2π+e−2π​
Apply exponent rule: a−b=ab1​=2e2π+e2π1​​
Join e2π+e2π1​:e2πe4π+1​
e2π+e2π1​
Convert element to fraction: e2π=e2πe2πe2π​=e2πe2πe2π​+e2π1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e2πe2πe2π+1​
e2πe2π+1=e4π+1
e2πe2π+1
e2πe2π=e4π
e2πe2π
Apply exponent rule: ab⋅ac=ab+ce2πe2π=e2π+2π=e2π+2π
Add similar elements: 2π+2π=4π=e4π
=e4π+1
=e2πe4π+1​
=2e2πe4π+1​​
Apply the fraction rule: acb​​=c⋅ab​=e2π⋅2e4π+1​
=2e2πe4π+1​
Use the following trivial identity:sin(0)=0
sin(0)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Rewrite using trig identities:sinh(2π)=2e2πe4π−1​
sinh(2π)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​=2e2π−e−2π​
2e2π−e−2π​=2e2πe4π−1​
2e2π−e−2π​
Apply exponent rule: a−b=ab1​=2e2π−e2π1​​
Join e2π−e2π1​:e2πe4π−1​
e2π−e2π1​
Convert element to fraction: e2π=e2πe2πe2π​=e2πe2πe2π​−e2π1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e2πe2πe2π−1​
e2πe2π−1=e4π−1
e2πe2π−1
e2πe2π=e4π
e2πe2π
Apply exponent rule: ab⋅ac=ab+ce2πe2π=e2π+2π=e2π+2π
Add similar elements: 2π+2π=4π=e4π
=e4π−1
=e2πe4π−1​
=2e2πe4π−1​​
Apply the fraction rule: acb​​=c⋅ab​=e2π⋅2e4π−1​
=2e2πe4π−1​
=1⋅2e2πe4π+1​−i0⋅2e2πe4π−1​
Simplify 1⋅2e2πe4π+1​−i0⋅2e2πe4π−1​:2e2πe4π+1​
1⋅2e2πe4π+1​−i0⋅2e2πe4π−1​
1⋅2e2πe4π+1​=2e2πe4π+1​
1⋅2e2πe4π+1​
Multiply: 1⋅2e2πe4π+1​=2e2πe4π+1​=2e2πe4π+1​
i0⋅2e2πe4π−1​=0
i0⋅2e2πe4π−1​
Multiply fractions: a⋅cb​=ca⋅b​=0⋅2e2πi(e4π−1)​
Apply rule 0⋅a=0=0
=2e2πe4π+1​−0
2e2πe4π+1​−0=2e2πe4π+1​=2e2πe4π+1​
=2e2πe4π+1​

Popular Examples

cos(-1(5/7))tan(3/2 pi)e^{pi/2}-e^{arctan(1+(\sqrt[4]{2/3})^2)}cot(47)(tan(50)-tan(20))/(1+tan(50)tan(20))

Frequently Asked Questions (FAQ)

  • What is the value of cos(2pii) ?

    The value of cos(2pii) is (e^{4pi}+1)/(2e^{2pi)}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024