Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(37.5)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(37.5∘)

Solution

42​4−6​+2​​​
+1
Decimal
0.60876…
Solution steps
sin(37.5∘)
Rewrite using trig identities:21−cos(75∘)​​
sin(37.5∘)
Write sin(37.5∘)as sin(275∘​)=sin(275∘​)
Use the Half Angle identity:sin(2θ​)=21−cos(θ)​​
Use the Double Angle identitycos(2θ)=1−2sin2(θ)
Substitute θ with 2θ​cos(θ)=1−2sin2(2θ​)
Switch sides2sin2(2θ​)=1−cos(θ)
Divide both sides by 2sin2(2θ​)=2(1−cos(θ))​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘][180∘,270∘][270∘,360∘]​quadrantIIIIIIIV​sinpositivepositivenegativenegative​cospositivenegativenegativepositive​​
sin(2θ​)=2(1−cos(θ))​​
=21−cos(75∘)​​
=21−cos(75∘)​​
Rewrite using trig identities:cos(75∘)=46​−2​​
cos(75∘)
Rewrite using trig identities:cos(45∘)cos(30∘)−sin(45∘)sin(30∘)
cos(75∘)
Write cos(75∘)as cos(45∘+30∘)=cos(45∘+30∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(45∘)cos(30∘)−sin(45∘)sin(30∘)
=cos(45∘)cos(30∘)−sin(45∘)sin(30∘)
Use the following trivial identity:cos(45∘)=22​​
cos(45∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:cos(30∘)=23​​
cos(30∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Use the following trivial identity:sin(45∘)=22​​
sin(45∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
Use the following trivial identity:sin(30∘)=21​
sin(30∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​−22​​⋅21​
Simplify 22​​⋅23​​−22​​⋅21​:46​−2​​
22​​⋅23​​−22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multiply the numbers: 2⋅2=4=42​3​​
Simplify 2​3​:6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multiply: 2​⋅1=2​=2⋅22​​
Multiply the numbers: 2⋅2=4=42​​
=46​​−42​​
Apply rule ca​±cb​=ca±b​=46​−2​​
=46​−2​​
=21−46​−2​​​​
Simplify 21−46​−2​​​​:42​4−6​+2​​​
21−46​−2​​​​
21−46​−2​​​=84−6​+2​​
21−46​−2​​​
Join 1−46​−2​​:44−6​+2​​
1−46​−2​​
Convert element to fraction: 1=41⋅4​=41⋅4​−46​−2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−(6​−2​)​
Multiply the numbers: 1⋅4=4=44−(6​−2​)​
−(6​−2​):−6​+2​
−(6​−2​)
Distribute parentheses=−(6​)−(−2​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−6​+2​
=44−6​+2​​
=244−6​+2​​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅24−6​+2​​
Multiply the numbers: 4⋅2=8=84−6​+2​​
=84−6​+2​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=8​4−6​+2​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: nab​=na​nb​=2​22​
Apply radical rule: nan​=a22​=2=22​
=22​4+2​−6​​​
Rationalize 22​4−6​+2​​​:42​4+2​−6​​​
22​4−6​+2​​​
Multiply by the conjugate 2​2​​=22​2​4−6​+2​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​4−6​+2​​​
=42​4+2​−6​​​
=42​4−6​+2​​​

Popular Examples

arccos(-0.52)arccos(-0.55)tan(arctan(53))arctan(1.8)2arcsin(1/2)

Frequently Asked Questions (FAQ)

  • What is the value of sin(37.5) ?

    The value of sin(37.5) is (sqrt(2)sqrt(4-\sqrt{6)+sqrt(2)})/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024