Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot^2(36)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot2(36∘)

Solution

55+25​​
+1
Decimal
1.89442…
Solution steps
cot2(36∘)
Rewrite using trig identities:cot(36∘)=20(310​+52​)5−5​​​
cot(36∘)
Rewrite using trig identities:sin(36∘)cos(36∘)​
cot(36∘)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(36∘)cos(36∘)​
=sin(36∘)cos(36∘)​
Rewrite using trig identities:cos(36∘)=45​+1​
cos(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
=45​+1​
Rewrite using trig identities:sin(36∘)=42​5−5​​​
sin(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
Square both sides(cos(36∘))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
Substitute cos(36∘)=45​+1​sin2(36∘)=1−(45​+1​)2
Refinesin2(36∘)=85−5​​
Take the square root of both sidessin(36∘)=±85−5​​​
sin(36∘)cannot be negativesin(36∘)=85−5​​​
Refinesin(36∘)=225−5​​​​
=225−5​​​​
Simplify=42​5−5​​​
=42​5−5​​​45​+1​​
Simplify 42​5−5​​​45​+1​​:20(310​+52​)5−5​​​
42​5−5​​​45​+1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=42​5−5​​(5​+1)⋅4​
Cancel the common factor: 4=2​5−5​​5​+1​
Rationalize 2​5−5​​5​+1​:20(310​+52​)5−5​​​
2​5−5​​5​+1​
Multiply by the conjugate 2​2​​=2​5−5​​2​(5​+1)2​​
2​5−5​​2​=25−5​​
2​5−5​​2​
Apply radical rule: a​a​=a2​2​=2=25−5​​
=25−5​​2​(5​+1)​
Multiply by the conjugate 5−5​​5−5​​​=25−5​​5−5​​2​(5​+1)5−5​​​
25−5​​5−5​​=10−25​
25−5​​5−5​​
Apply radical rule: a​a​=a5−5​​5−5​​=5−5​=2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=10−25​2​(5​+1)5−5​​​
Factor out common term −2:−2(5​−5)
−25​+10
Rewrite 10 as 2⋅5=−25​+2⋅5
Factor out common term −2=−2(5​−5)
=−2(5​−5)2​(5​+1)5−5​​​
Cancel −2(5​−5)2​(5​+1)5−5​​​:2(5−5​)2​(5​+1)5−5​​​
−2(5​−5)2​(5​+1)5−5​​​
5​−5=−(5−5​)=−−2(5−5​)2​(1+5​)5−5​​​
Refine=2(5−5​)2​(5​+1)5−5​​​
=2(5−5​)2​(5​+1)5−5​​​
Multiply by the conjugate 5+5​5+5​​=2(5−5​)(5+5​)2​(5​+1)5−5​​(5+5​)​
2​(5​+1)5−5​​(5+5​)=610​5−5​​+102​5−5​​
2​(5​+1)5−5​​(5+5​)
=2​(5​+1)(5+5​)5−5​​
Expand (5​+1)(5+5​):65​+10
(5​+1)(5+5​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=5​,b=1,c=5,d=5​=5​⋅5+5​5​+1⋅5+1⋅5​
=55​+5​5​+1⋅5+1⋅5​
Simplify 55​+5​5​+1⋅5+1⋅5​:65​+10
55​+5​5​+1⋅5+1⋅5​
Add similar elements: 55​+1⋅5​=65​=65​+5​5​+1⋅5
Apply radical rule: a​a​=a5​5​=5=65​+5+1⋅5
Multiply the numbers: 1⋅5=5=65​+5+5
Add the numbers: 5+5=10=65​+10
=65​+10
=2​5−5​​(65​+10)
Expand 2​5−5​​(65​+10):610​5−5​​+102​5−5​​
2​5−5​​(65​+10)
Apply the distributive law: a(b+c)=ab+aca=2​5−5​​,b=65​,c=10=2​5−5​​⋅65​+2​5−5​​⋅10
=62​5​5−5​​+102​5−5​​
62​5​5−5​​=610​5−5​​
62​5​5−5​​
Apply radical rule: a​b​=a⋅b​2​5​5−5​​=2⋅5(5−5​)​=62⋅5(5−5​)​
Multiply the numbers: 2⋅5=10=610(5−5​)​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥010(5−5​)​=10​5−5​​=610​5−5​​
=610​5−5​​+102​5−5​​
=610​5−5​​+102​5−5​​
2(5−5​)(5+5​)=40
2(5−5​)(5+5​)
Expand (5−5​)(5+5​):20
(5−5​)(5+5​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=5,b=5​=52−(5​)2
Simplify 52−(5​)2:20
52−(5​)2
52=25
52
52=25=25
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=25−5
Subtract the numbers: 25−5=20=20
=20
=2⋅20
Expand 2⋅20:40
2⋅20
Distribute parentheses=2⋅20
Multiply the numbers: 2⋅20=40=40
=40
=40610​5−5​​+102​5−5​​​
Factor 610​5−5​​+102​5−5​​:25−5​​(310​+52​)
610​5−5​​+102​5−5​​
Rewrite as=3⋅25−5​​10​+5⋅25−5​​2​
Factor out common term 25−5​​=25−5​​(310​+52​)
=4025−5​​(310​+52​)​
Cancel the common factor: 2=20(310​+52​)5−5​​​
=20(310​+52​)5−5​​​
=20(310​+52​)5−5​​​
=(20(310​+52​)5−5​​​)2
Simplify (20(310​+52​)5−5​​​)2:55+25​​
(20(310​+52​)5−5​​​)2
Apply exponent rule: (ba​)c=bcac​=202((310​+52​)5−5​​)2​
Apply exponent rule: (a⋅b)n=anbn((310​+52​)5−5​​)2=(5−5​​)2(310​+52​)2=202(5−5​​)2(310​+52​)2​
(5−5​​)2:5−5​
Apply radical rule: a​=a21​=((5−5​)21​)2
Apply exponent rule: (ab)c=abc=(5−5​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5−5​
=202(310​+52​)2(5−5​)​
(310​+52​)2=140+605​
(310​+52​)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=310​,b=52​
=(310​)2+2⋅310​⋅52​+(52​)2
Simplify (310​)2+2⋅310​⋅52​+(52​)2:140+605​
(310​)2+2⋅310​⋅52​+(52​)2
(310​)2=90
(310​)2
Apply exponent rule: (a⋅b)n=anbn=32(10​)2
(10​)2:10
Apply radical rule: a​=a21​=(1021​)2
Apply exponent rule: (ab)c=abc=1021​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=10
=32⋅10
32=9=9⋅10
Multiply the numbers: 9⋅10=90=90
2⋅310​⋅52​=605​
2⋅310​⋅52​
Factor integer 10=2⋅5=2⋅32⋅5​⋅52​
Apply radical rule: nab​=na​nb​2⋅5​=2​5​=2⋅32​5​⋅52​
Apply radical rule: a​a​=a2​2​=2=2⋅3⋅5⋅25​
Multiply the numbers: 2⋅3⋅5⋅2=60=605​
(52​)2=50
(52​)2
Apply exponent rule: (a⋅b)n=anbn=52(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=52⋅2
52=25=25⋅2
Multiply the numbers: 25⋅2=50=50
=90+605​+50
Add the numbers: 90+50=140=140+605​
=140+605​
=202(140+605​)(5−5​)​
Factor 140+605​:20(7+35​)
140+605​
Rewrite as=20⋅7+20⋅35​
Factor out common term 20=20(7+35​)
=20220(7+35​)(5−5​)​
Cancel the common factor: 20=20(7+35​)(5−5​)​
Expand (7+35​)(5−5​):20+85​
(7+35​)(5−5​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=7,b=35​,c=5,d=−5​=7⋅5+7(−5​)+35​⋅5+35​(−5​)
Apply minus-plus rules+(−a)=−a=7⋅5−75​+3⋅55​−35​5​
Simplify 7⋅5−75​+3⋅55​−35​5​:20+85​
7⋅5−75​+3⋅55​−35​5​
7⋅5=35
7⋅5
Multiply the numbers: 7⋅5=35=35
3⋅55​=155​
3⋅55​
Multiply the numbers: 3⋅5=15=155​
35​5​=15
35​5​
Apply radical rule: a​a​=a5​5​=5=3⋅5
Multiply the numbers: 3⋅5=15=15
=35−75​+155​−15
Add similar elements: −75​+155​=85​=35+85​−15
Subtract the numbers: 35−15=20=20+85​
=20+85​
=2020+85​​
Factor 20+85​:4(5+25​)
20+85​
Rewrite as=4⋅5+4⋅25​
Factor out common term 4=4(5+25​)
=204(5+25​)​
Cancel the common factor: 4=55+25​​
=55+25​​

Popular Examples

4cos(150)cos(127)(sin(3pi))/4sin^2(-pi/2)sec(pi/4)-sec(0)

Frequently Asked Questions (FAQ)

  • What is the value of cot^2(36) ?

    The value of cot^2(36) is (5+2sqrt(5))/5
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024