Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

|sin(x)|=sin(x)+2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

∣sin(x)∣=sin(x)+2

Solution

x=23π​+2πn
+1
Degrees
x=270∘+360∘n
Solution steps
∣sin(x)∣=sin(x)+2
Solve by substitution
∣sin(x)∣=sin(x)+2
Let: sin(x)=u∣u∣=u+2
∣u∣=u+2:u=−1
∣u∣=u+2
Find positive and negative intervals
Find intervals for ∣u∣
u≥0: u≥0,∣u∣=u
Rewrite ∣u∣for u≥0:∣u∣=u
Apply absolute rule: If u≥0then ∣u∣=u∣u∣=u
u<0: u<0,∣u∣=−u
Rewrite ∣u∣for u<0:∣u∣=−u
Apply absolute rule: If u<0then ∣u∣=−u∣u∣=−u
Identify the intervals:u<0,u≥0
∣u∣​u<0−​u≥0+​​
u<0,u≥0
u<0,u≥0
Solve the inequality for each interval
u<0,u≥0
For u<0:u=−1
For u<0rewrite ∣u∣=u+2 as −u=u+2
−u=u+2:u=−1
−u=u+2
Move uto the left side
−u=u+2
Subtract u from both sides−u−u=u+2−u
Simplify−2u=2
−2u=2
Divide both sides by −2
−2u=2
Divide both sides by −2−2−2u​=−22​
Simplifyu=−1
u=−1
Combine the intervalsu=−1andu<0
Merge Overlapping Intervals
u=−1andu<0
The intersection of two intervals is the set of numbers which are in both intervals
u=−1andu<0
u=−1
u=−1
For u≥0:No Solution
For u≥0rewrite ∣u∣=u+2 as u=u+2
u=u+2:No Solution
u=u+2
Subtract u from both sidesu−u=u+2−u
Simplify0=2
The sides are not equalNoSolution
Combine the intervalsNoSolutionandu≥0
Merge Overlapping Intervals
NoSolutionandu≥0
The intersection of two intervals is the set of numbers which are in both intervals
No Solutionandu≥0
NoSolution
NoSolution
Combine Solutions:u=−1orNoSolution
u=−1orNoSolution
u=−1
Substitute back u=sin(x)sin(x)=−1
sin(x)=−1
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
Combine all the solutionsx=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(a)=0.2315(1(cos^2(x)))/((1-sin^2(x)))=0sin(x)sin^3(x)-sin^5(x)sin^3(x)=05sin^2(x)=2sin(x)3cos^2(x)+5sin(x)-4=0

Frequently Asked Questions (FAQ)

  • What is the general solution for |sin(x)|=sin(x)+2 ?

    The general solution for |sin(x)|=sin(x)+2 is x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024