Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(3)tan(x)+2sec(x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3​tan(x)+2sec(x)=1

Solution

x=35π​+2πn
+1
Degrees
x=300∘+360∘n
Solution steps
3​tan(x)+2sec(x)=1
Subtract 1 from both sides3​tan(x)+2sec(x)−1=0
Express with sin, cos3​cos(x)sin(x)​+2⋅cos(x)1​−1=0
Simplify 3​cos(x)sin(x)​+2⋅cos(x)1​−1:cos(x)3​sin(x)+2−cos(x)​
3​cos(x)sin(x)​+2⋅cos(x)1​−1
3​cos(x)sin(x)​=cos(x)3​sin(x)​
3​cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)3​​
2⋅cos(x)1​=cos(x)2​
2⋅cos(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)1⋅2​
Multiply the numbers: 1⋅2=2=cos(x)2​
=cos(x)3​sin(x)​+cos(x)2​−1
Combine the fractions cos(x)3​sin(x)​+cos(x)2​:cos(x)3​sin(x)+2​
Apply rule ca​±cb​=ca±b​=cos(x)3​sin(x)+2​
=cos(x)3​sin(x)+2​−1
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)sin(x)3​+2​−cos(x)1⋅cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)3​+2−1⋅cos(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)3​sin(x)+2−cos(x)​
cos(x)3​sin(x)+2−cos(x)​=0
g(x)f(x)​=0⇒f(x)=03​sin(x)+2−cos(x)=0
Add cos(x) to both sides3​sin(x)+2=cos(x)
Square both sides(3​sin(x)+2)2=cos2(x)
Subtract cos2(x) from both sides(3​sin(x)+2)2−cos2(x)=0
Rewrite using trig identities
(2+sin(x)3​)2−cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(2+sin(x)3​)2−(1−sin2(x))
Simplify (2+sin(x)3​)2−(1−sin2(x)):4sin2(x)+43​sin(x)+3
(2+sin(x)3​)2−(1−sin2(x))
=(2+3​sin(x))2−(1−sin2(x))
(2+sin(x)3​)2:4+43​sin(x)+3sin2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=2,b=sin(x)3​
=22+2⋅2sin(x)3​+(sin(x)3​)2
Simplify 22+2⋅2sin(x)3​+(sin(x)3​)2:4+43​sin(x)+3sin2(x)
22+2⋅2sin(x)3​+(sin(x)3​)2
22=4
22
22=4=4
2⋅2sin(x)3​=43​sin(x)
2⋅2sin(x)3​
Multiply the numbers: 2⋅2=4=43​sin(x)
(sin(x)3​)2=3sin2(x)
(sin(x)3​)2
Apply exponent rule: (a⋅b)n=anbn=(3​)2sin2(x)
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=sin2(x)⋅3
=4+43​sin(x)+3sin2(x)
=4+43​sin(x)+3sin2(x)
=4+43​sin(x)+3sin2(x)−(1−sin2(x))
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=4+43​sin(x)+3sin2(x)−1+sin2(x)
Simplify 4+43​sin(x)+3sin2(x)−1+sin2(x):4sin2(x)+43​sin(x)+3
4+43​sin(x)+3sin2(x)−1+sin2(x)
Group like terms=43​sin(x)+3sin2(x)+sin2(x)+4−1
Add similar elements: 3sin2(x)+sin2(x)=4sin2(x)=43​sin(x)+4sin2(x)+4−1
Add/Subtract the numbers: 4−1=3=4sin2(x)+43​sin(x)+3
=4sin2(x)+43​sin(x)+3
=4sin2(x)+43​sin(x)+3
3+4sin2(x)+4sin(x)3​=0
Solve by substitution
3+4sin2(x)+4sin(x)3​=0
Let: sin(x)=u3+4u2+4u3​=0
3+4u2+4u3​=0:u=−23​​
3+4u2+4u3​=0
Write in the standard form ax2+bx+c=04u2+43​u+3=0
Solve with the quadratic formula
4u2+43​u+3=0
Quadratic Equation Formula:
For a=4,b=43​,c=3u1,2​=2⋅4−43​±(43​)2−4⋅4⋅3​​
u1,2​=2⋅4−43​±(43​)2−4⋅4⋅3​​
(43​)2−4⋅4⋅3=0
(43​)2−4⋅4⋅3
(43​)2=42⋅3
(43​)2
Apply exponent rule: (a⋅b)n=anbn=42(3​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=42⋅3
4⋅4⋅3=48
4⋅4⋅3
Multiply the numbers: 4⋅4⋅3=48=48
=42⋅3−48
42⋅3=48
42⋅3
42=16=16⋅3
Multiply the numbers: 16⋅3=48=48
=48−48
Subtract the numbers: 48−48=0=0
u1,2​=2⋅4−43​±0​​
u=2⋅4−43​​
2⋅4−43​​=−23​​
2⋅4−43​​
Multiply the numbers: 2⋅4=8=8−43​​
Apply the fraction rule: b−a​=−ba​=−843​​
Cancel the common factor: 4=−23​​
u=−23​​
The solution to the quadratic equation is:u=−23​​
Substitute back u=sin(x)sin(x)=−23​​
sin(x)=−23​​
sin(x)=−23​​:x=34π​+2πn,x=35π​+2πn
sin(x)=−23​​
General solutions for sin(x)=−23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=34π​+2πn,x=35π​+2πn
x=34π​+2πn,x=35π​+2πn
Combine all the solutionsx=34π​+2πn,x=35π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 3​tan(x)+2sec(x)=1
Remove the ones that don't agree with the equation.
Check the solution 34π​+2πn:False
34π​+2πn
Plug in n=134π​+2π1
For 3​tan(x)+2sec(x)=1plug inx=34π​+2π13​tan(34π​+2π1)+2sec(34π​+2π1)=1
Refine−1=1
⇒False
Check the solution 35π​+2πn:True
35π​+2πn
Plug in n=135π​+2π1
For 3​tan(x)+2sec(x)=1plug inx=35π​+2π13​tan(35π​+2π1)+2sec(35π​+2π1)=1
Refine1=1
⇒True
x=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(a)=0.14(1+cos^2(x))/(sin^2(x))= 1/(sin^2(x))7sin(a)= 1/11tan(x)=2,x+y=135tan(x/2)+cos(x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(3)tan(x)+2sec(x)=1 ?

    The general solution for sqrt(3)tan(x)+2sec(x)=1 is x=(5pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024