Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arccos(x)-arcsin(x)=arcsin(1-x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arccos(x)−arcsin(x)=arcsin(1−x)

Solution

x=0,x=21​
Solution steps
arccos(x)−arcsin(x)=arcsin(1−x)
a=b⇒sin(a)=sin(b)sin(arccos(x)−arcsin(x))=sin(arcsin(1−x))
Use the following identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)sin(arccos(x))cos(arcsin(x))−cos(arccos(x))sin(arcsin(x))=sin(arcsin(1−x))
Use the following identity: sin(arccos(x))=1−x2​
Use the following identity: cos(arcsin(x))=1−x2​
Use the following identity: cos(arccos(x))=x
Use the following identity: sin(arcsin(x))=x
1−x2​1−x2​−xx=1−x
Solve 1−x2​1−x2​−xx=1−x:x=0,x=21​
1−x2​1−x2​−xx=1−x
Expand 1−x2​1−x2​−xx:1−2x2
1−x2​1−x2​−xx
1−x2​1−x2​=1−x2
1−x2​1−x2​
Apply radical rule: a​a​=a1−x2​1−x2​=1−x2=1−x2
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
=1−x2−x2
Refine=1−2x2
1−2x2=1−x
Solve 1−2x2=1−x:x=0,x=21​
1−2x2=1−x
Move xto the left side
1−2x2=1−x
Add x to both sides1−2x2+x=1−x+x
Simplify1−2x2+x=1
1−2x2+x=1
Move 1to the left side
1−2x2+x=1
Subtract 1 from both sides1−2x2+x−1=1−1
Simplify−2x2+x=0
−2x2+x=0
Solve with the quadratic formula
−2x2+x=0
Quadratic Equation Formula:
For a=−2,b=1,c=0x1,2​=2(−2)−1±12−4(−2)⋅0​​
x1,2​=2(−2)−1±12−4(−2)⋅0​​
12−4(−2)⋅0​=1
12−4(−2)⋅0​
Apply rule 1a=112=1=1−4(−2)⋅0​
Apply rule −(−a)=a=1+4⋅2⋅0​
Apply rule 0⋅a=0=1+0​
Add the numbers: 1+0=1=1​
Apply rule 1​=1=1
x1,2​=2(−2)−1±1​
Separate the solutionsx1​=2(−2)−1+1​,x2​=2(−2)−1−1​
x=2(−2)−1+1​:0
2(−2)−1+1​
Remove parentheses: (−a)=−a=−2⋅2−1+1​
Add/Subtract the numbers: −1+1=0=−2⋅20​
Multiply the numbers: 2⋅2=4=−40​
Apply the fraction rule: −ba​=−ba​=−40​
Apply rule a0​=0,a=0=−0
=0
x=2(−2)−1−1​:21​
2(−2)−1−1​
Remove parentheses: (−a)=−a=−2⋅2−1−1​
Subtract the numbers: −1−1=−2=−2⋅2−2​
Multiply the numbers: 2⋅2=4=−4−2​
Apply the fraction rule: −b−a​=ba​=42​
Cancel the common factor: 2=21​
The solutions to the quadratic equation are:x=0,x=21​
x=0,x=21​
Verify Solutions:x=0True,x=21​True
Check the solutions by plugging them into 1−x2​1−x2​−xx=1−x
Remove the ones that don't agree with the equation.
Plug in x=0:True
1−02​1−02​−0⋅0=1−0
1−02​1−02​−0⋅0=1−0
1−02​1−02​−0⋅0
Apply rule 0a=002=0=1−0​1−0​−0⋅0
1−0​1−0​=1
1−0​1−0​
Apply radical rule: a​a​=a1−0​1−0​=1−0=1−0
Subtract the numbers: 1−0=1=1
0⋅0=0
0⋅0
Multiply the numbers: 0⋅0=0=0
=1−0
1−0=1−0
True
Plug in x=21​:True
1−(21​)2​1−(21​)2​−(21​)(21​)=1−(21​)
1−(21​)2​1−(21​)2​−(21​)(21​)=21​
1−(21​)2​1−(21​)2​−(21​)(21​)
Remove parentheses: (a)=a=1−(21​)2​1−(21​)2​−21​⋅21​
1−(21​)2​1−(21​)2​=43​
1−(21​)2​1−(21​)2​
Apply radical rule: a​a​=a−(21​)2+1​−(21​)2+1​=1−(21​)2=1−(21​)2
(21​)2=41​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
21​⋅21​=41​
21​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅1​
Multiply the numbers: 1⋅1=1=2⋅21​
Multiply the numbers: 2⋅2=4=41​
=43​−41​
Apply rule ca​±cb​=ca±b​=43−1​
Subtract the numbers: 3−1=2=42​
Cancel the common factor: 2=21​
1−(21​)=21​
1−(21​)
Remove parentheses: (a)=a=1−21​
Convert element to fraction: 1=21⋅2​=21⋅2​−21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2−1​
1⋅2−1=1
1⋅2−1
Multiply the numbers: 1⋅2=2=2−1
Subtract the numbers: 2−1=1=1
=21​
21​=21​
True
The solutions arex=0,x=21​
x=0,x=21​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arccos(x)−arcsin(x)=arcsin(1−x)
Remove the ones that don't agree with the equation.
Check the solution 0:True
0
Plug in n=10
For arccos(x)−arcsin(x)=arcsin(1−x)plug inx=0arccos(0)−arcsin(0)=arcsin(1−0)
Refine1.57079…=1.57079…
⇒True
Check the solution 21​:True
21​
Plug in n=121​
For arccos(x)−arcsin(x)=arcsin(1−x)plug inx=21​arccos(21​)−arcsin(21​)=arcsin(1−21​)
Refine0.52359…=0.52359…
⇒True
x=0,x=21​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)=|sin(x)|1-cos^2(x)-sin^{22}(x)=0cos(x/4)sin(x/4)=sqrt(3)sin(x/4)cos(x/4)5cos(x)=1+2sin^2(x)tan(2x+1)=-cot(x+3)

Frequently Asked Questions (FAQ)

  • What is the general solution for arccos(x)-arcsin(x)=arcsin(1-x) ?

    The general solution for arccos(x)-arcsin(x)=arcsin(1-x) is x=0,x= 1/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024