Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(sin(x)cos(x))=2sqrt(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)cos(x)1​=22​

Solution

x=8π​+πn,x=83π​+πn
+1
Degrees
x=22.5∘+180∘n,x=67.5∘+180∘n
Solution steps
sin(x)cos(x)1​=22​
Rewrite using trig identities
sin(x)cos(x)1​
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=2sin(2x)​1​
2sin(2x)​1​=22​
Simplify 2sin(2x)​1​:sin(2x)2​
2sin(2x)​1​
Apply the fraction rule: cb​1​=bc​=sin(2x)2​
sin(2x)2​=22​
Multiply both sides by sin(2x)
sin(2x)2​=22​
Multiply both sides by sin(2x)sin(2x)2​sin(2x)=22​sin(2x)
Simplify2=22​sin(2x)
2=22​sin(2x)
Switch sides22​sin(2x)=2
Divide both sides by 22​
22​sin(2x)=2
Divide both sides by 22​22​22​sin(2x)​=22​2​
Simplify
22​22​sin(2x)​=22​2​
Simplify 22​22​sin(2x)​:sin(2x)
22​22​sin(2x)​
Divide the numbers: 22​=1=2​2​sin(2x)​
Cancel the common factor: 2​=sin(2x)
Simplify 22​2​:22​​
22​2​
Divide the numbers: 22​=1=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
sin(2x)=22​​
sin(2x)=22​​
sin(2x)=22​​
Verify Solutions
Find undefined (singularity) points:sin(2x)=0
Take the denominator(s) of 2sin(2x)​1​ and compare to zero
Solve 2sin(2x)​=0:sin(2x)=0
2sin(2x)​=0
Multiply both sides by 2
2sin(2x)​=0
Multiply both sides by 222sin(2x)​=0⋅2
Simplifysin(2x)=0
sin(2x)=0
The following points are undefinedsin(2x)=0
Combine undefined points with solutions:
sin(2x)=22​​
General solutions for sin(2x)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=4π​+2πn,2x=43π​+2πn
2x=4π​+2πn,2x=43π​+2πn
Solve 2x=4π​+2πn:x=8π​+πn
2x=4π​+2πn
Divide both sides by 2
2x=4π​+2πn
Divide both sides by 222x​=24π​​+22πn​
Simplify
22x​=24π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 24π​​+22πn​:8π​+πn
24π​​+22πn​
24π​​=8π​
24π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅2π​
Multiply the numbers: 4⋅2=8=8π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=8π​+πn
x=8π​+πn
x=8π​+πn
x=8π​+πn
Solve 2x=43π​+2πn:x=83π​+πn
2x=43π​+2πn
Divide both sides by 2
2x=43π​+2πn
Divide both sides by 222x​=243π​​+22πn​
Simplify
22x​=243π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 243π​​+22πn​:83π​+πn
243π​​+22πn​
243π​​=83π​
243π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅23π​
Multiply the numbers: 4⋅2=8=83π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=83π​+πn
x=83π​+πn
x=83π​+πn
x=83π​+πn
x=8π​+πn,x=83π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)= 1/(5^{1/2)}sqrt(3)csc(x/2)-2=0arcsin(y)= 1/(sqrt(2))6sin(y)=0tan(θ)=-(sqrt(3))/3 ,0<= θ<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for 1/(sin(x)cos(x))=2sqrt(2) ?

    The general solution for 1/(sin(x)cos(x))=2sqrt(2) is x= pi/8+pin,x=(3pi)/8+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024