Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin^2(x)=5-2cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin2(x)=5−2cos(x)

Solution

NoSolutionforx∈R
Solution steps
4sin2(x)=5−2cos(x)
Subtract 5−2cos(x) from both sides4sin2(x)−5+2cos(x)=0
Rewrite using trig identities
−5+2cos(x)+4sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−5+2cos(x)+4(1−cos2(x))
Simplify −5+2cos(x)+4(1−cos2(x)):2cos(x)−4cos2(x)−1
−5+2cos(x)+4(1−cos2(x))
Expand 4(1−cos2(x)):4−4cos2(x)
4(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=cos2(x)=4⋅1−4cos2(x)
Multiply the numbers: 4⋅1=4=4−4cos2(x)
=−5+2cos(x)+4−4cos2(x)
Simplify −5+2cos(x)+4−4cos2(x):2cos(x)−4cos2(x)−1
−5+2cos(x)+4−4cos2(x)
Group like terms=2cos(x)−4cos2(x)−5+4
Add/Subtract the numbers: −5+4=−1=2cos(x)−4cos2(x)−1
=2cos(x)−4cos2(x)−1
=2cos(x)−4cos2(x)−1
−1+2cos(x)−4cos2(x)=0
Solve by substitution
−1+2cos(x)−4cos2(x)=0
Let: cos(x)=u−1+2u−4u2=0
−1+2u−4u2=0:u=41​−i43​​,u=41​+i43​​
−1+2u−4u2=0
Write in the standard form ax2+bx+c=0−4u2+2u−1=0
Solve with the quadratic formula
−4u2+2u−1=0
Quadratic Equation Formula:
For a=−4,b=2,c=−1u1,2​=2(−4)−2±22−4(−4)(−1)​​
u1,2​=2(−4)−2±22−4(−4)(−1)​​
Simplify 22−4(−4)(−1)​:23​i
22−4(−4)(−1)​
Apply rule −(−a)=a=22−4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=22−16​
Apply imaginary number rule: −a​=ia​=i16−22​
−22+16​=23​
−22+16​
22=4=−4+16​
Add/Subtract the numbers: −4+16=12=12​
Prime factorization of 12:22⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
=22⋅3
=22⋅3​
Apply radical rule: nab​=na​nb​=3​22​
Apply radical rule: nan​=a22​=2=23​
=23​i
u1,2​=2(−4)−2±23​i​
Separate the solutionsu1​=2(−4)−2+23​i​,u2​=2(−4)−2−23​i​
u=2(−4)−2+23​i​:41​−i43​​
2(−4)−2+23​i​
Remove parentheses: (−a)=−a=−2⋅4−2+23​i​
Multiply the numbers: 2⋅4=8=−8−2+23​i​
Apply the fraction rule: −ba​=−ba​=−8−2+23​i​
Cancel 8−2+23​i​:4−1+3​i​
8−2+23​i​
Factor −2+23​i:2(−1+3​i)
−2+23​i
Rewrite as=−2⋅1+23​i
Factor out common term 2=2(−1+3​i)
=82(−1+3​i)​
Cancel the common factor: 2=4−1+3​i​
=−4−1+3​i​
Rewrite −4−1+3​i​ in standard complex form: 41​−43​​i
−4−1+3​i​
Apply the fraction rule: ca±b​=ca​±cb​4−1+3​i​=−(−41​)−(43​i​)=−(−41​)−(43​i​)
Remove parentheses: (a)=a,−(−a)=a=41​−43​i​
=41​−43​​i
u=2(−4)−2−23​i​:41​+i43​​
2(−4)−2−23​i​
Remove parentheses: (−a)=−a=−2⋅4−2−23​i​
Multiply the numbers: 2⋅4=8=−8−2−23​i​
Apply the fraction rule: −ba​=−ba​=−8−2−23​i​
Cancel 8−2−23​i​:−41+3​i​
8−2−23​i​
Factor −2−23​i:−2(1+3​i)
−2−23​i
Rewrite as=−2⋅1−23​i
Factor out common term 2=−2(1+3​i)
=−82(1+3​i)​
Cancel the common factor: 2=−41+3​i​
=−(−41+3​i​)
Apply rule −(−a)=a=41+3​i​
Rewrite 41+3​i​ in standard complex form: 41​+43​​i
41+3​i​
Apply the fraction rule: ca±b​=ca​±cb​41+3​i​=41​+43​i​=41​+43​i​
=41​+43​​i
The solutions to the quadratic equation are:u=41​−i43​​,u=41​+i43​​
Substitute back u=cos(x)cos(x)=41​−i43​​,cos(x)=41​+i43​​
cos(x)=41​−i43​​,cos(x)=41​+i43​​
cos(x)=41​−i43​​:No Solution
cos(x)=41​−i43​​
NoSolution
cos(x)=41​+i43​​:No Solution
cos(x)=41​+i43​​
NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x+pi/6)=-1sec(x)= 4/34cos(x)+3cos(x)=54sin(2x)tan(x)-tan(x)=03sin(x)=sqrt(3)*sin(x)+3cos(x)+3sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 4sin^2(x)=5-2cos(x) ?

    The general solution for 4sin^2(x)=5-2cos(x) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024