Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(2x)+tan(2x)=8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(2x)+tan(2x)=8

Solution

x=21.32208…​+πn
+1
Degrees
x=37.87498…∘+180∘n
Solution steps
sec(2x)+tan(2x)=8
Subtract 8 from both sidessec(2x)+tan(2x)−8=0
Express with sin, coscos(2x)1​+cos(2x)sin(2x)​−8=0
Simplify cos(2x)1​+cos(2x)sin(2x)​−8:cos(2x)1+sin(2x)−8cos(2x)​
cos(2x)1​+cos(2x)sin(2x)​−8
Combine the fractions cos(2x)1​+cos(2x)sin(2x)​:cos(2x)1+sin(2x)​
Apply rule ca​±cb​=ca±b​=cos(2x)1+sin(2x)​
=cos(2x)sin(2x)+1​−8
Convert element to fraction: 8=cos(2x)8cos(2x)​=cos(2x)1+sin(2x)​−cos(2x)8cos(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x)1+sin(2x)−8cos(2x)​
cos(2x)1+sin(2x)−8cos(2x)​=0
g(x)f(x)​=0⇒f(x)=01+sin(2x)−8cos(2x)=0
Add 8cos(2x) to both sides1+sin(2x)=8cos(2x)
Square both sides(1+sin(2x))2=(8cos(2x))2
Subtract (8cos(2x))2 from both sides(1+sin(2x))2−64cos2(2x)=0
Rewrite using trig identities
(1+sin(2x))2−64cos2(2x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1+sin(2x))2−64(1−sin2(2x))
Simplify (1+sin(2x))2−64(1−sin2(2x)):65sin2(2x)+2sin(2x)−63
(1+sin(2x))2−64(1−sin2(2x))
(1+sin(2x))2:1+2sin(2x)+sin2(2x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=1,b=sin(2x)
=12+2⋅1⋅sin(2x)+sin2(2x)
Simplify 12+2⋅1⋅sin(2x)+sin2(2x):1+2sin(2x)+sin2(2x)
12+2⋅1⋅sin(2x)+sin2(2x)
Apply rule 1a=112=1=1+2⋅1⋅sin(2x)+sin2(2x)
Multiply the numbers: 2⋅1=2=1+2sin(2x)+sin2(2x)
=1+2sin(2x)+sin2(2x)
=1+2sin(2x)+sin2(2x)−64(1−sin2(2x))
Expand −64(1−sin2(2x)):−64+64sin2(2x)
−64(1−sin2(2x))
Apply the distributive law: a(b−c)=ab−aca=−64,b=1,c=sin2(2x)=−64⋅1−(−64)sin2(2x)
Apply minus-plus rules−(−a)=a=−64⋅1+64sin2(2x)
Multiply the numbers: 64⋅1=64=−64+64sin2(2x)
=1+2sin(2x)+sin2(2x)−64+64sin2(2x)
Simplify 1+2sin(2x)+sin2(2x)−64+64sin2(2x):65sin2(2x)+2sin(2x)−63
1+2sin(2x)+sin2(2x)−64+64sin2(2x)
Group like terms=2sin(2x)+sin2(2x)+64sin2(2x)+1−64
Add similar elements: sin2(2x)+64sin2(2x)=65sin2(2x)=2sin(2x)+65sin2(2x)+1−64
Add/Subtract the numbers: 1−64=−63=65sin2(2x)+2sin(2x)−63
=65sin2(2x)+2sin(2x)−63
=65sin2(2x)+2sin(2x)−63
−63+2sin(2x)+65sin2(2x)=0
Solve by substitution
−63+2sin(2x)+65sin2(2x)=0
Let: sin(2x)=u−63+2u+65u2=0
−63+2u+65u2=0:u=6563​,u=−1
−63+2u+65u2=0
Write in the standard form ax2+bx+c=065u2+2u−63=0
Solve with the quadratic formula
65u2+2u−63=0
Quadratic Equation Formula:
For a=65,b=2,c=−63u1,2​=2⋅65−2±22−4⋅65(−63)​​
u1,2​=2⋅65−2±22−4⋅65(−63)​​
22−4⋅65(−63)​=128
22−4⋅65(−63)​
Apply rule −(−a)=a=22+4⋅65⋅63​
Multiply the numbers: 4⋅65⋅63=16380=22+16380​
22=4=4+16380​
Add the numbers: 4+16380=16384=16384​
Factor the number: 16384=1282=1282​
Apply radical rule: nan​=a1282​=128=128
u1,2​=2⋅65−2±128​
Separate the solutionsu1​=2⋅65−2+128​,u2​=2⋅65−2−128​
u=2⋅65−2+128​:6563​
2⋅65−2+128​
Add/Subtract the numbers: −2+128=126=2⋅65126​
Multiply the numbers: 2⋅65=130=130126​
Cancel the common factor: 2=6563​
u=2⋅65−2−128​:−1
2⋅65−2−128​
Subtract the numbers: −2−128=−130=2⋅65−130​
Multiply the numbers: 2⋅65=130=130−130​
Apply the fraction rule: b−a​=−ba​=−130130​
Apply rule aa​=1=−1
The solutions to the quadratic equation are:u=6563​,u=−1
Substitute back u=sin(2x)sin(2x)=6563​,sin(2x)=−1
sin(2x)=6563​,sin(2x)=−1
sin(2x)=6563​:x=2arcsin(6563​)​+πn,x=2π​−2arcsin(6563​)​+πn
sin(2x)=6563​
Apply trig inverse properties
sin(2x)=6563​
General solutions for sin(2x)=6563​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(6563​)+2πn,2x=π−arcsin(6563​)+2πn
2x=arcsin(6563​)+2πn,2x=π−arcsin(6563​)+2πn
Solve 2x=arcsin(6563​)+2πn:x=2arcsin(6563​)​+πn
2x=arcsin(6563​)+2πn
Divide both sides by 2
2x=arcsin(6563​)+2πn
Divide both sides by 222x​=2arcsin(6563​)​+22πn​
Simplifyx=2arcsin(6563​)​+πn
x=2arcsin(6563​)​+πn
Solve 2x=π−arcsin(6563​)+2πn:x=2π​−2arcsin(6563​)​+πn
2x=π−arcsin(6563​)+2πn
Divide both sides by 2
2x=π−arcsin(6563​)+2πn
Divide both sides by 222x​=2π​−2arcsin(6563​)​+22πn​
Simplifyx=2π​−2arcsin(6563​)​+πn
x=2π​−2arcsin(6563​)​+πn
x=2arcsin(6563​)​+πn,x=2π​−2arcsin(6563​)​+πn
sin(2x)=−1:x=43π​+πn
sin(2x)=−1
General solutions for sin(2x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=23π​+2πn
2x=23π​+2πn
Solve 2x=23π​+2πn:x=43π​+πn
2x=23π​+2πn
Divide both sides by 2
2x=23π​+2πn
Divide both sides by 222x​=223π​​+22πn​
Simplify
22x​=223π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 223π​​+22πn​:43π​+πn
223π​​+22πn​
223π​​=43π​
223π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π​
Multiply the numbers: 2⋅2=4=43π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=43π​+πn
x=43π​+πn
x=43π​+πn
x=43π​+πn
x=43π​+πn
Combine all the solutionsx=2arcsin(6563​)​+πn,x=2π​−2arcsin(6563​)​+πn,x=43π​+πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sec(2x)+tan(2x)=8
Remove the ones that don't agree with the equation.
Check the solution 2arcsin(6563​)​+πn:True
2arcsin(6563​)​+πn
Plug in n=12arcsin(6563​)​+π1
For sec(2x)+tan(2x)=8plug inx=2arcsin(6563​)​+π1sec(2(2arcsin(6563​)​+π1))+tan(2(2arcsin(6563​)​+π1))=8
Refine8=8
⇒True
Check the solution 2π​−2arcsin(6563​)​+πn:False
2π​−2arcsin(6563​)​+πn
Plug in n=12π​−2arcsin(6563​)​+π1
For sec(2x)+tan(2x)=8plug inx=2π​−2arcsin(6563​)​+π1sec(2(2π​−2arcsin(6563​)​+π1))+tan(2(2π​−2arcsin(6563​)​+π1))=8
Refine−8=8
⇒False
Check the solution 43π​+πn:False
43π​+πn
Plug in n=143π​+π1
For sec(2x)+tan(2x)=8plug inx=43π​+π1sec(2(43π​+π1))+tan(2(43π​+π1))=8
Undefined
⇒False
x=2arcsin(6563​)​+πn
Show solutions in decimal formx=21.32208…​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)= 1/12sin(θ)=-8/92sin^2(x)+5sin(x)-12=0sqrt(3)tan(x-pi/5)-1=0solvefor x,0=4-1/(cos^2(x))

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(2x)+tan(2x)=8 ?

    The general solution for sec(2x)+tan(2x)=8 is x=(1.32208…)/2+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024