Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(4x+20)*cot(x+50)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(4x+20)⋅cot(x+50∘)=1

Solution

x=3360∘n​−320​+16.66666…∘,x=76.66666…∘−320​+3360∘n​
+1
Radians
x=−320​+545π​+32π​n,x=5423π​−320​+32π​n
Solution steps
tan(4x+20)cot(x+50∘)=1
Subtract 1 from both sidestan(4x+20)cot(x+50∘)−1=0
Express with sin, cos
−1+cot(50∘+x)tan(20+4x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−1+sin(50∘+x)cos(50∘+x)​tan(20+4x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+sin(50∘+x)cos(50∘+x)​⋅cos(20+4x)sin(20+4x)​
Simplify −1+sin(50∘+x)cos(50∘+x)​⋅cos(20+4x)sin(20+4x)​:sin(18900∘+18x​)cos(20+4x)−sin(18900∘+18x​)cos(20+4x)+cos(18900∘+18x​)sin(20+4x)​
−1+sin(50∘+x)cos(50∘+x)​⋅cos(20+4x)sin(20+4x)​
sin(50∘+x)cos(50∘+x)​⋅cos(20+4x)sin(20+4x)​=sin(18900∘+18x​)cos(20+4x)cos(18900∘+18x​)sin(20+4x)​
sin(50∘+x)cos(50∘+x)​⋅cos(20+4x)sin(20+4x)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(50∘+x)cos(20+4x)cos(50∘+x)sin(20+4x)​
Join 50∘+x:18900∘+18x​
50∘+x
Convert element to fraction: x=18x18​=50∘+18x⋅18​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18900∘+x⋅18​
=sin(1818x+900∘​)cos(4x+20)cos(x+50∘)sin(4x+20)​
Join 50∘+x:18900∘+18x​
50∘+x
Convert element to fraction: x=18x18​=50∘+18x⋅18​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18900∘+x⋅18​
=sin(1818x+900∘​)cos(4x+20)cos(1818x+900∘​)sin(4x+20)​
=−1+sin(1818x+900∘​)cos(4x+20)cos(1818x+900∘​)sin(4x+20)​
Convert element to fraction: 1=sin(18900∘+x18​)cos(20+4x)1sin(18900∘+x18​)cos(20+4x)​=−sin(18900∘+x⋅18​)cos(20+4x)1⋅sin(18900∘+x⋅18​)cos(20+4x)​+sin(18900∘+x⋅18​)cos(20+4x)cos(18900∘+x⋅18​)sin(20+4x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(18900∘+x⋅18​)cos(20+4x)−1⋅sin(18900∘+x⋅18​)cos(20+4x)+cos(18900∘+x⋅18​)sin(20+4x)​
Multiply: 1⋅sin(18900∘+x⋅18​)=sin(18900∘+x⋅18​)=sin(1818x+900∘​)cos(4x+20)−sin(1818x+900∘​)cos(4x+20)+cos(1818x+900∘​)sin(4x+20)​
=sin(18900∘+18x​)cos(20+4x)−sin(18900∘+18x​)cos(20+4x)+cos(18900∘+18x​)sin(20+4x)​
cos(20+4x)sin(1818x+900∘​)−cos(20+4x)sin(1818x+900∘​)+cos(1818x+900∘​)sin(20+4x)​=0
g(x)f(x)​=0⇒f(x)=0−cos(20+4x)sin(1818x+900∘​)+cos(1818x+900∘​)sin(20+4x)=0
Rewrite using trig identities
−cos(20+4x)sin(1818x+900∘​)+cos(1818x+900∘​)sin(20+4x)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(20+4x−1818x+900∘​)
sin(20+4x−1818x+900∘​)=0
General solutions for sin(20+4x−1818x+900∘​)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
20+4x−1818x+900∘​=0+360∘n,20+4x−1818x+900∘​=180∘+360∘n
20+4x−1818x+900∘​=0+360∘n,20+4x−1818x+900∘​=180∘+360∘n
Solve 20+4x−1818x+900∘​=0+360∘n:x=3360∘n​−320​+16.66666…∘
20+4x−1818x+900∘​=0+360∘n
0+360∘n=360∘n20+4x−1818x+900∘​=360∘n
Move 20to the right side
20+4x−1818x+900∘​=360∘n
Subtract 20 from both sides20+4x−1818x+900∘​−20=360∘n−20
Simplify4x−1818x+900∘​=360∘n−20
4x−1818x+900∘​=360∘n−20
Multiply both sides by 18
4x−1818x+900∘​=360∘n−20
Multiply both sides by 184x⋅18−1818x+900∘​⋅18=360∘n⋅18−20⋅18
Simplify
4x⋅18−1818x+900∘​⋅18=360∘n⋅18−20⋅18
Simplify 4x⋅18:72x
4x⋅18
Multiply the numbers: 4⋅18=72=72x
Simplify −1818x+900∘​⋅18:−(18x+900∘)
−1818x+900∘​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=−18(18x+900∘)⋅18​
Cancel the common factor: 18=−(18x+900∘)
Simplify 360∘n⋅18:6480∘n
360∘n⋅18
Multiply the numbers: 2⋅18=36=6480∘n
Simplify −20⋅18:−360
−20⋅18
Multiply the numbers: 20⋅18=360=−360
72x−(18x+900∘)=6480∘n−360
72x−(18x+900∘)=6480∘n−360
72x−(18x+900∘)=6480∘n−360
Expand 72x−(18x+900∘):54x−900∘
72x−(18x+900∘)
−(18x+900∘):−18x−900∘
−(18x+900∘)
Distribute parentheses=−(18x)−(900∘)
Apply minus-plus rules+(−a)=−a=−18x−900∘
=72x−18x−900∘
Add similar elements: 72x−18x=54x=54x−900∘
54x−900∘=6480∘n−360
Move 900∘to the right side
54x−900∘=6480∘n−360
Add 900∘ to both sides54x−900∘+900∘=6480∘n−360+900∘
Simplify54x=6480∘n−360+900∘
54x=6480∘n−360+900∘
Divide both sides by 54
54x=6480∘n−360+900∘
Divide both sides by 545454x​=546480∘n​−54360​+16.66666…∘
Simplify
5454x​=546480∘n​−54360​+16.66666…∘
Simplify 5454x​:x
5454x​
Divide the numbers: 5454​=1=x
Simplify 546480∘n​−54360​+16.66666…∘:3360∘n​−320​+16.66666…∘
546480∘n​−54360​+16.66666…∘
Cancel 546480∘n​:3360∘n​
546480∘n​
Cancel the common factor: 18=3360∘n​
=3360∘n​−54360​+16.66666…∘
Cancel 54360​:320​
54360​
Cancel the common factor: 18=320​
=3360∘n​−320​+16.66666…∘
x=3360∘n​−320​+16.66666…∘
x=3360∘n​−320​+16.66666…∘
x=3360∘n​−320​+16.66666…∘
Solve 20+4x−1818x+900∘​=180∘+360∘n:x=76.66666…∘−320​+3360∘n​
20+4x−1818x+900∘​=180∘+360∘n
Move 20to the right side
20+4x−1818x+900∘​=180∘+360∘n
Subtract 20 from both sides20+4x−1818x+900∘​−20=180∘+360∘n−20
Simplify4x−1818x+900∘​=180∘+360∘n−20
4x−1818x+900∘​=180∘+360∘n−20
Multiply both sides by 18
4x−1818x+900∘​=180∘+360∘n−20
Multiply both sides by 184x⋅18−1818x+900∘​⋅18=180∘18+360∘n⋅18−20⋅18
Simplify
4x⋅18−1818x+900∘​⋅18=180∘18+360∘n⋅18−20⋅18
Simplify 4x⋅18:72x
4x⋅18
Multiply the numbers: 4⋅18=72=72x
Simplify −1818x+900∘​⋅18:−(18x+900∘)
−1818x+900∘​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=−18(18x+900∘)⋅18​
Cancel the common factor: 18=−(18x+900∘)
Simplify 180∘18:3240∘
180∘18
Apply the commutative law: 180∘18=3240∘3240∘
Simplify 360∘n⋅18:6480∘n
360∘n⋅18
Multiply the numbers: 2⋅18=36=6480∘n
Simplify −20⋅18:−360
−20⋅18
Multiply the numbers: 20⋅18=360=−360
72x−(18x+900∘)=3240∘+6480∘n−360
72x−(18x+900∘)=3240∘+6480∘n−360
72x−(18x+900∘)=3240∘+6480∘n−360
Expand 72x−(18x+900∘):54x−900∘
72x−(18x+900∘)
−(18x+900∘):−18x−900∘
−(18x+900∘)
Distribute parentheses=−(18x)−(900∘)
Apply minus-plus rules+(−a)=−a=−18x−900∘
=72x−18x−900∘
Add similar elements: 72x−18x=54x=54x−900∘
54x−900∘=3240∘+6480∘n−360
Move 900∘to the right side
54x−900∘=3240∘+6480∘n−360
Add 900∘ to both sides54x−900∘+900∘=3240∘+6480∘n−360+900∘
Simplify54x=4140∘+6480∘n−360
54x=4140∘+6480∘n−360
Divide both sides by 54
54x=4140∘+6480∘n−360
Divide both sides by 545454x​=76.66666…∘+546480∘n​−54360​
Simplify
5454x​=76.66666…∘+546480∘n​−54360​
Simplify 5454x​:x
5454x​
Divide the numbers: 5454​=1=x
Simplify 76.66666…∘+546480∘n​−54360​:76.66666…∘−320​+3360∘n​
76.66666…∘+546480∘n​−54360​
Group like terms=76.66666…∘−54360​+546480∘n​
Cancel 54360​:320​
54360​
Cancel the common factor: 18=320​
=76.66666…∘−320​+546480∘n​
Cancel 546480∘n​:3360∘n​
546480∘n​
Cancel the common factor: 18=3360∘n​
=76.66666…∘−320​+3360∘n​
x=76.66666…∘−320​+3360∘n​
x=76.66666…∘−320​+3360∘n​
x=76.66666…∘−320​+3360∘n​
x=3360∘n​−320​+16.66666…∘,x=76.66666…∘−320​+3360∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

csc(x)=-0.5cos(θ)-4=-3csc^2(x)+2csc(x)-3=-4-cos(θ)=0cos(w)=0.53
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024