Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

16^{sin(x)}=8^{csc(x)}

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

16sin(x)=8csc(x)

Solution

x=3π​+2πn,x=32π​+2πn,x=34π​+2πn,x=35π​+2πn
+1
Degrees
x=60∘+360∘n,x=120∘+360∘n,x=240∘+360∘n,x=300∘+360∘n
Solution steps
16sin(x)=8csc(x)
Subtract 8csc(x) from both sides16sin(x)−8csc(x)=0
Rewrite using trig identities
16sin(x)−8csc(x)
Use the basic trigonometric identity: sin(x)=csc(x)1​=16csc(x)1​−8csc(x)
16csc(x)1​−8csc(x)=0
Solve by substitution
16csc(x)1​−8csc(x)=0
Let: csc(x)=u16u1​−8u=0
16u1​−8u=0:u=323​​,u=−323​​
16u1​−8u=0
Add 8u to both sides16u1​−8u+8u=0+8u
Simplify16u1​=8u
Apply exponent rules
16u1​=8u
Convert to base 2:24⋅u1​=23u
Convert 8 to base 28=2316u1​=(23)u
Convert 16 to base 216=24(24)u1​=(23)u
Apply exponent rule: (ab)c=abc(24)u1​=24⋅u1​24⋅u1​=(23)u
Apply exponent rule: (ab)c=abc(23)u=23u24⋅u1​=23u
24⋅u1​=23u
If af(x)=ag(x), then f(x)=g(x)4⋅u1​=3u
Simplifyu4​=3u
u4​=3u
Solve u4​=3u:u=323​​,u=−323​​
u4​=3u
Multiply both sides by u
u4​=3u
Multiply both sides by uu4​u=3uu
Simplify 3uu:3u2
u4​u=3uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=3u1+1
Add the numbers: 1+1=2=3u2
4=3u2
4=3u2
Solve 4=3u2:u=323​​,u=−323​​
4=3u2
Switch sides3u2=4
Divide both sides by 3
3u2=4
Divide both sides by 333u2​=34​
Simplifyu2=34​
u2=34​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=34​​,u=−34​​
34​​=323​​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
Rationalize 3​2​:323​​
3​2​
Multiply by the conjugate 3​3​​=3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=323​​
=323​​
−34​​=−323​​
−34​​
Simplify 34​​:3​2​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
u=323​​,u=−323​​
u=323​​,u=−323​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u4​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=323​​,u=−323​​
u=323​​,u=−323​​
Substitute back u=csc(x)csc(x)=323​​,csc(x)=−323​​
csc(x)=323​​,csc(x)=−323​​
csc(x)=323​​:x=3π​+2πn,x=32π​+2πn
csc(x)=323​​
General solutions for csc(x)=323​​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=3π​+2πn,x=32π​+2πn
x=3π​+2πn,x=32π​+2πn
csc(x)=−323​​:x=34π​+2πn,x=35π​+2πn
csc(x)=−323​​
General solutions for csc(x)=−323​​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=34π​+2πn,x=35π​+2πn
x=34π​+2πn,x=35π​+2πn
Combine all the solutionsx=3π​+2πn,x=32π​+2πn,x=34π​+2πn,x=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^2(x)-6tan(x)-7=03sin(2x)=2,0<= x<= picos(θ)= 2/(2.24)cot(α)= 2/3-900cos(30x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024