Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sinh(2x)=5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sinh(2x)=5

Solution

x=21​ln(35+34​​)
+1
Degrees
x=36.77803…∘
Solution steps
3sinh(2x)=5
Rewrite using trig identities
3sinh(2x)=5
Use the Hyperbolic identity: sinh(x)=2ex−e−x​3⋅2e2x−e−2x​=5
3⋅2e2x−e−2x​=5
3⋅2e2x−e−2x​=5:x=21​ln(35+34​​)
3⋅2e2x−e−2x​=5
Apply exponent rules
3⋅2e2x−e−2x​=5
Apply exponent rule: abc=(ab)ce2x=(ex)2,e−2x=(ex)−23⋅2(ex)2−(ex)−2​=5
3⋅2(ex)2−(ex)−2​=5
Rewrite the equation with ex=u3⋅2(u)2−(u)−2​=5
Solve 3⋅2u2−u−2​=5:u=35+34​​​,u=−35+34​​​
3⋅2u2−u−2​=5
Refine2u23(u4−1)​=5
Multiply both sides by u2
2u23(u4−1)​=5
Multiply both sides by u22u23(u4−1)​u2=5u2
Simplify23(u4−1)​=5u2
23(u4−1)​=5u2
Solve 23(u4−1)​=5u2:u=35+34​​​,u=−35+34​​​
23(u4−1)​=5u2
Multiply both sides by 2
23(u4−1)​=5u2
Multiply both sides by 223(u4−1)​⋅2=5u2⋅2
Simplify3(u4−1)=10u2
3(u4−1)=10u2
Expand 3(u4−1):3u4−3
3(u4−1)
Apply the distributive law: a(b−c)=ab−aca=3,b=u4,c=1=3u4−3⋅1
Multiply the numbers: 3⋅1=3=3u4−3
3u4−3=10u2
Move 10u2to the left side
3u4−3=10u2
Subtract 10u2 from both sides3u4−3−10u2=10u2−10u2
Simplify3u4−3−10u2=0
3u4−3−10u2=0
Write in the standard form an​xn+…+a1​x+a0​=03u4−10u2−3=0
Rewrite the equation with v=u2 and v2=u43v2−10v−3=0
Solve 3v2−10v−3=0:v=35+34​​,v=35−34​​
3v2−10v−3=0
Solve with the quadratic formula
3v2−10v−3=0
Quadratic Equation Formula:
For a=3,b=−10,c=−3v1,2​=2⋅3−(−10)±(−10)2−4⋅3(−3)​​
v1,2​=2⋅3−(−10)±(−10)2−4⋅3(−3)​​
(−10)2−4⋅3(−3)​=234​
(−10)2−4⋅3(−3)​
Apply rule −(−a)=a=(−10)2+4⋅3⋅3​
Apply exponent rule: (−a)n=an,if n is even(−10)2=102=102+4⋅3⋅3​
Multiply the numbers: 4⋅3⋅3=36=102+36​
102=100=100+36​
Add the numbers: 100+36=136=136​
Prime factorization of 136:23⋅17
136
136divides by 2136=68⋅2=2⋅68
68divides by 268=34⋅2=2⋅2⋅34
34divides by 234=17⋅2=2⋅2⋅2⋅17
2,17 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅17
=23⋅17
=23⋅17​
Apply exponent rule: ab+c=ab⋅ac=22⋅2⋅17​
Apply radical rule: =22​2⋅17​
Apply radical rule: 22​=2=22⋅17​
Refine=234​
v1,2​=2⋅3−(−10)±234​​
Separate the solutionsv1​=2⋅3−(−10)+234​​,v2​=2⋅3−(−10)−234​​
v=2⋅3−(−10)+234​​:35+34​​
2⋅3−(−10)+234​​
Apply rule −(−a)=a=2⋅310+234​​
Multiply the numbers: 2⋅3=6=610+234​​
Factor 10+234​:2(5+34​)
10+234​
Rewrite as=2⋅5+234​
Factor out common term 2=2(5+34​)
=62(5+34​)​
Cancel the common factor: 2=35+34​​
v=2⋅3−(−10)−234​​:35−34​​
2⋅3−(−10)−234​​
Apply rule −(−a)=a=2⋅310−234​​
Multiply the numbers: 2⋅3=6=610−234​​
Factor 10−234​:2(5−34​)
10−234​
Rewrite as=2⋅5−234​
Factor out common term 2=2(5−34​)
=62(5−34​)​
Cancel the common factor: 2=35−34​​
The solutions to the quadratic equation are:v=35+34​​,v=35−34​​
v=35+34​​,v=35−34​​
Substitute back v=u2,solve for u
Solve u2=35+34​​:u=35+34​​​,u=−35+34​​​
u2=35+34​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=35+34​​​,u=−35+34​​​
Solve u2=35−34​​:No Solution for u∈R
u2=35−34​​
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions are
u=35+34​​​,u=−35+34​​​
u=35+34​​​,u=−35+34​​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 32u2−u−2​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=35+34​​​,u=−35+34​​​
u=35+34​​​,u=−35+34​​​
Substitute back u=ex,solve for x
Solve ex=35+34​​​:x=21​ln(35+34​​)
ex=35+34​​​
Apply exponent rules
ex=35+34​​​
Apply exponent rule: a​=a21​35+34​​​=(35+34​​)21​ex=(35+34​​)21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln​(35+34​​)21​​
Apply log rule: ln(ea)=aln(ex)=xx=ln​(35+34​​)21​​
Apply log rule: ln(xa)=a⋅ln(x)ln​(35+34​​)21​​=21​ln(35+34​​)x=21​ln(35+34​​)
x=21​ln(35+34​​)
Solve ex=−35+34​​​:No Solution for x∈R
ex=−35+34​​​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=21​ln(35+34​​)
x=21​ln(35+34​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x/(25.4))=352/3 =(sin(x))/(sin(135))sin(x)+2(cos(x))^2=1asin(2θ)=0cos(2x)=0,x<= 2pi,0

Frequently Asked Questions (FAQ)

  • What is the general solution for 3sinh(2x)=5 ?

    The general solution for 3sinh(2x)=5 is x= 1/2 ln((5+sqrt(34))/3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024