Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(x)=2cosh(x)sinh(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(x)=2cosh(x)sinh(x)

Solution

x=0
+1
Degrees
x=0∘
Solution steps
sinh(x)=2cosh(x)sinh(x)
Rewrite using trig identities
sinh(x)=2cosh(x)sinh(x)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2ex−e−x​=2cosh(x)sinh(x)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2ex−e−x​=2cosh(x)2ex−e−x​
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2ex−e−x​=2⋅2ex+e−x​⋅2ex−e−x​
2ex−e−x​=2⋅2ex+e−x​⋅2ex−e−x​
2ex−e−x​=2⋅2ex+e−x​⋅2ex−e−x​:x=0
2ex−e−x​=2⋅2ex+e−x​⋅2ex−e−x​
Multiply both sides by 22ex−e−x​⋅2=2⋅2ex+e−x​⋅2ex−e−x​⋅2
Simplifyex−e−x=(ex+e−x)(ex−e−x)
Apply exponent rules
ex−e−x=(ex+e−x)(ex−e−x)
Apply exponent rule: abc=(ab)ce−x=(ex)−1ex−(ex)−1=(ex+(ex)−1)(ex−(ex)−1)
ex−(ex)−1=(ex+(ex)−1)(ex−(ex)−1)
Rewrite the equation with ex=uu−(u)−1=(u+(u)−1)(u−(u)−1)
Solve u−u−1=(u+u−1)(u−u−1):u=1,u=−1
u−u−1=(u+u−1)(u−u−1)
Refineu−u1​=(u+u1​)(u−u1​)
Multiply both sides by u
u−u1​=(u+u1​)(u−u1​)
Multiply both sides by uuu−u1​u=(u+u1​)(u−u1​)u
Simplify
uu−u1​u=(u+u1​)(u−u1​)u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
u2−1=(u+u1​)(u−u1​)u
u2−1=(u+u1​)(u−u1​)u
u2−1=(u+u1​)(u−u1​)u
Expand (u+u1​)(u−u1​)u:u3−u1​
(u+u1​)(u−u1​)u
=u(u+u1​)(u−u1​)
Expand (u+u1​)(u−u1​):u2−u21​
(u+u1​)(u−u1​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=u,b=u1​=u2−(u1​)2
(u1​)2=u21​
(u1​)2
Apply exponent rule: (ba​)c=bcac​=u212​
Apply rule 1a=112=1=u21​
=u2−u21​
=u(u2−u21​)
Expand u(u2−u21​):u3−u1​
u(u2−u21​)
Apply the distributive law: a(b−c)=ab−aca=u,b=u2,c=u21​=uu2−uu21​
=u2u−u21​u
Simplify u2u−u21​u:u3−u1​
u2u−u21​u
u2u=u3
u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=u2+1
Add the numbers: 2+1=3=u3
u21​u=u1​
u21​u
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅u​
Multiply: 1⋅u=u=u2u​
Cancel the common factor: u=u1​
=u3−u1​
=u3−u1​
=u3−u1​
u2−1=u3−u1​
Multiply both sides by u
u2−1=u3−u1​
Multiply both sides by uu2u−1⋅u=u3u−u1​u
Simplify
u2u−1⋅u=u3u−u1​u
Simplify u2u:u3
u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=u2+1
Add the numbers: 2+1=3=u3
Simplify −1⋅u:−u
−1⋅u
Multiply: 1⋅u=u=−u
Simplify u3u:u4
u3u
Apply exponent rule: ab⋅ac=ab+cu3u=u3+1=u3+1
Add the numbers: 3+1=4=u4
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
u3−u=u4−1
u3−u=u4−1
u3−u=u4−1
Solve u3−u=u4−1:u=1,u=−1
u3−u=u4−1
Switch sidesu4−1=u3−u
Move uto the left side
u4−1=u3−u
Add u to both sidesu4−1+u=u3−u+u
Simplifyu4−1+u=u3
u4−1+u=u3
Move u3to the left side
u4−1+u=u3
Subtract u3 from both sidesu4−1+u−u3=u3−u3
Simplifyu4−1+u−u3=0
u4−1+u−u3=0
Write in the standard form an​xn+…+a1​x+a0​=0u4−u3+u−1=0
Factor u4−u3+u−1:(u−1)(u+1)(u2−u+1)
u4−u3+u−1
=(u4−u3)+(u−1)
Factor out u3from u4−u3:u3(u−1)
u4−u3
Apply exponent rule: ab+c=abacu4=uu3=uu3−u3
Factor out common term u3=u3(u−1)
=(u−1)+u3(u−1)
Factor out common term u−1=(u−1)(u3+1)
Factor u3+1:(u+1)(u2−u+1)
u3+1
Rewrite 1 as 13=u3+13
Apply Sum of Cubes Formula: x3+y3=(x+y)(x2−xy+y2)u3+13=(u+1)(u2−u+1)=(u+1)(u2−u+1)
=(u−1)(u+1)(u2−u+1)
(u−1)(u+1)(u2−u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0oru+1=0oru2−u+1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u2−u+1=0:No Solution for u∈R
u2−u+1=0
Discriminant u2−u+1=0:−3
u2−u+1=0
For a quadratic equation of the form ax2+bx+c=0 the discriminant is b2−4acFor a=1,b=−1,c=1:(−1)2−4⋅1⋅1(−1)2−4⋅1⋅1
Expand (−1)2−4⋅1⋅1:−3
(−1)2−4⋅1⋅1
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1−4
Subtract the numbers: 1−4=−3=−3
−3
Discriminant cannot be negative for u∈R
The solution isNoSolutionforu∈R
The solutions areu=1,u=−1
u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u−u−1 and compare to zero
u=0
Take the denominator(s) of (u+u−1)(u−u−1) and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1
u=1,u=−1
Substitute back u=ex,solve for x
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
Solve ex=−1:No Solution for x∈R
ex=−1
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=0
x=0

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)=sin(x)+1tan(x)= 5/(-4)cot(α)=4.90=8tan(θ)1=4sin^2(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for sinh(x)=2cosh(x)sinh(x) ?

    The general solution for sinh(x)=2cosh(x)sinh(x) is x=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024