Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-sec(x/2)=2csc(x/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−sec(2x​)=2csc(2x​)

Solution

x=−2⋅1.10714…+2πn
+1
Degrees
x=−126.86989…∘+360∘n
Solution steps
−sec(2x​)=2csc(2x​)
Subtract 2csc(2x​) from both sides−sec(2x​)−2csc(2x​)=0
Express with sin, cos
−sec(2x​)−2csc(2x​)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−cos(2x​)1​−2csc(2x​)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−cos(2x​)1​−2⋅sin(2x​)1​
Simplify −cos(2x​)1​−2⋅sin(2x​)1​:cos(2x​)sin(2x​)−sin(2x​)−2cos(2x​)​
−cos(2x​)1​−2⋅sin(2x​)1​
2⋅sin(2x​)1​=sin(2x​)2​
2⋅sin(2x​)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(2x​)1⋅2​
Multiply the numbers: 1⋅2=2=sin(2x​)2​
=−cos(2x​)1​−sin(2x​)2​
Least Common Multiplier of cos(2x​),sin(2x​):cos(2x​)sin(2x​)
cos(2x​),sin(2x​)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(2x​) or sin(2x​)=cos(2x​)sin(2x​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(2x​)sin(2x​)
For cos(2x​)1​:multiply the denominator and numerator by sin(2x​)cos(2x​)1​=cos(2x​)sin(2x​)1⋅sin(2x​)​=cos(2x​)sin(2x​)sin(2x​)​
For sin(2x​)2​:multiply the denominator and numerator by cos(2x​)sin(2x​)2​=sin(2x​)cos(2x​)2cos(2x​)​
=−cos(2x​)sin(2x​)sin(2x​)​−sin(2x​)cos(2x​)2cos(2x​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x​)sin(2x​)−sin(2x​)−2cos(2x​)​
=cos(2x​)sin(2x​)−sin(2x​)−2cos(2x​)​
cos(2x​)sin(2x​)−sin(2x​)−2cos(2x​)​=0
g(x)f(x)​=0⇒f(x)=0−sin(2x​)−2cos(2x​)=0
Rewrite using trig identities
−sin(2x​)−2cos(2x​)=0
Divide both sides by cos(2x​),cos(2x​)=0cos(2x​)−sin(2x​)−2cos(2x​)​=cos(2x​)0​
Simplify−cos(2x​)sin(2x​)​−2=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−tan(2x​)−2=0
−tan(2x​)−2=0
Move 2to the right side
−tan(2x​)−2=0
Add 2 to both sides−tan(2x​)−2+2=0+2
Simplify−tan(2x​)=2
−tan(2x​)=2
Divide both sides by −1
−tan(2x​)=2
Divide both sides by −1−1−tan(2x​)​=−12​
Simplifytan(2x​)=−2
tan(2x​)=−2
Apply trig inverse properties
tan(2x​)=−2
General solutions for tan(2x​)=−2tan(x)=−a⇒x=arctan(−a)+πn2x​=arctan(−2)+πn
2x​=arctan(−2)+πn
Solve 2x​=arctan(−2)+πn:x=−2arctan(2)+2πn
2x​=arctan(−2)+πn
Simplify arctan(−2)+πn:−arctan(2)+πn
arctan(−2)+πn
Use the following property: arctan(−x)=−arctan(x)arctan(−2)=−arctan(2)=−arctan(2)+πn
2x​=−arctan(2)+πn
Multiply both sides by 2
2x​=−arctan(2)+πn
Multiply both sides by 222x​=−2arctan(2)+2πn
Simplifyx=−2arctan(2)+2πn
x=−2arctan(2)+2πn
x=−2arctan(2)+2πn
Show solutions in decimal formx=−2⋅1.10714…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec^2(θ)-sec(θ)=2,θ[0, pi/2 ]solvefor x,sin(x)=-0.5tan(2θ)=1,0<= θ<= 2pi0.4=0.4cos^2(θ)sin(α)= 15/17

Frequently Asked Questions (FAQ)

  • What is the general solution for -sec(x/2)=2csc(x/2) ?

    The general solution for -sec(x/2)=2csc(x/2) is x=-2*1.10714…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024