Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-1=(tan(x)-(3/4))/(1+tan(x)(3/4))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−1=1+tan(x)(43​)tan(x)−(43​)​

Solution

x=−0.14189…+πn
+1
Degrees
x=−8.13010…∘+180∘n
Solution steps
−1=1+tan(x)(43​)tan(x)−(43​)​
Switch sides1+tan(x)43​tan(x)−43​​=−1
Solve by substitution
1+tan(x)43​tan(x)−43​​=−1
Let: tan(x)=u1+u43​u−43​​=−1
1+u43​u−43​​=−1:u=−71​
1+u43​u−43​​=−1
Simplify 1+u43​u−43​​:4+3u4u−3​
1+u43​u−43​​
Join 1+u43​:44+3u​
1+u43​
Multiply u43​:43u​
u43​
Multiply fractions: a⋅cb​=ca⋅b​=43u​
=1+43u​
Convert element to fraction: 1=41⋅4​=41⋅4​+43u​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4+3u​
Multiply the numbers: 1⋅4=4=44+3u​
=44+3u​u−43​​
Join u−43​:44u−3​
u−43​
Convert element to fraction: u=4u4​=4u⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4u⋅4−3​
=44+3u​44u−3​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=4(4+3u)(u⋅4−3)⋅4​
Cancel the common factor: 4=4+3uu⋅4−3​
4+3u4u−3​=−1
Multiply both sides by 4+3u
4+3u4u−3​=−1
Multiply both sides by 4+3u4+3u4u−3​(4+3u)=−1⋅(4+3u)
Simplify
4+3u4u−3​(4+3u)=−1⋅(4+3u)
Simplify 4+3u4u−3​(4+3u):4u−3
4+3u4u−3​(4+3u)
Multiply fractions: a⋅cb​=ca⋅b​=4+3u(4u−3)(4+3u)​
Cancel the common factor: 4+3u=4u−3
Simplify −1⋅(4+3u):−(4+3u)
−1⋅(4+3u)
Multiply: 1⋅(4+3u)=(4+3u)=−(3u+4)
4u−3=−(4+3u)
4u−3=−(4+3u)
4u−3=−(4+3u)
Expand −(4+3u):−4−3u
−(4+3u)
Distribute parentheses=−(4)−(3u)
Apply minus-plus rules+(−a)=−a=−4−3u
4u−3=−4−3u
Move 3to the right side
4u−3=−4−3u
Add 3 to both sides4u−3+3=−4−3u+3
Simplify4u=−3u−1
4u=−3u−1
Move 3uto the left side
4u=−3u−1
Add 3u to both sides4u+3u=−3u−1+3u
Simplify7u=−1
7u=−1
Divide both sides by 7
7u=−1
Divide both sides by 777u​=7−1​
Simplifyu=−71​
u=−71​
Verify Solutions
Find undefined (singularity) points:u=−34​
Take the denominator(s) of 1+u43​u−43​​ and compare to zero
Solve 1+u43​=0:u=−34​
1+u43​=0
Move 1to the right side
1+u43​=0
Subtract 1 from both sides1+u43​−1=0−1
Simplifyu43​=−1
u43​=−1
Multiply both sides by 4
u43​=−1
Multiply both sides by 44u43​=4(−1)
Simplify3u=−4
3u=−4
Divide both sides by 3
3u=−4
Divide both sides by 333u​=3−4​
Simplifyu=−34​
u=−34​
The following points are undefinedu=−34​
Combine undefined points with solutions:
u=−71​
Substitute back u=tan(x)tan(x)=−71​
tan(x)=−71​
tan(x)=−71​:x=arctan(−71​)+πn
tan(x)=−71​
Apply trig inverse properties
tan(x)=−71​
General solutions for tan(x)=−71​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−71​)+πn
x=arctan(−71​)+πn
Combine all the solutionsx=arctan(−71​)+πn
Show solutions in decimal formx=−0.14189…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)=-15/13arctan((20)/x)-arctan((400)/x)=-9.72cos(θ)= 9/15tan(t)=-5/121-3cos(x)-cos(2x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for -1=(tan(x)-(3/4))/(1+tan(x)(3/4)) ?

    The general solution for -1=(tan(x)-(3/4))/(1+tan(x)(3/4)) is x=-0.14189…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024