Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)-cos(2x)=0,0<= x<360

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)−cos(2x)=0,0∘≤x<360∘

Solution

x=0,x=120∘,x=240∘
+1
Radians
x=0,x=32π​,x=34π​
Solution steps
cos(x)−cos(2x)=0,0∘≤x<360∘
Rewrite using trig identities
−cos(2x)+cos(x)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(2x+2x​)sin(2x−2x​)
Simplify −2sin(2x+2x​)sin(2x−2x​):2sin(2x​)sin(23x​)
−2sin(2x+2x​)sin(2x−2x​)
Add similar elements: x+2x=3x=−2sin(23x​)sin(2x−2x​)
2x−2x​=−2x​
2x−2x​
Add similar elements: x−2x=−x=2−x​
Apply the fraction rule: b−a​=−ba​=−2x​
=−2sin(23x​)sin(−2x​)
Use the negative angle identity: sin(−x)=−sin(x)=−2(−sin(2x​))sin(23x​)
Apply rule −(−a)=a=2sin(2x​)sin(23x​)
=2sin(2x​)sin(23x​)
2sin(23x​)sin(2x​)=0
Solving each part separatelysin(23x​)=0orsin(2x​)=0
sin(23x​)=0,0≤x<360∘:x=0,x=120∘,x=240∘
sin(23x​)=0,0≤x<360∘
General solutions for sin(23x​)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
23x​=0+360∘n,23x​=180∘+360∘n
23x​=0+360∘n,23x​=180∘+360∘n
Solve 23x​=0+360∘n:x=3720∘n​
23x​=0+360∘n
0+360∘n=360∘n23x​=360∘n
Multiply both sides by 2
23x​=360∘n
Multiply both sides by 222⋅3x​=2⋅360∘n
Simplify3x=720∘n
3x=720∘n
Divide both sides by 3
3x=720∘n
Divide both sides by 333x​=3720∘n​
Simplifyx=3720∘n​
x=3720∘n​
Solve 23x​=180∘+360∘n:x=120∘+3720∘n​
23x​=180∘+360∘n
Multiply both sides by 2
23x​=180∘+360∘n
Multiply both sides by 222⋅3x​=360∘+2⋅360∘n
Simplify3x=360∘+720∘n
3x=360∘+720∘n
Divide both sides by 3
3x=360∘+720∘n
Divide both sides by 333x​=120∘+3720∘n​
Simplifyx=120∘+3720∘n​
x=120∘+3720∘n​
x=3720∘n​,x=120∘+3720∘n​
Solutions for the range 0≤x<360∘x=0,x=120∘,x=240∘
sin(2x​)=0,0≤x<360∘:x=0
sin(2x​)=0,0≤x<360∘
General solutions for sin(2x​)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x​=0+360∘n,2x​=180∘+360∘n
2x​=0+360∘n,2x​=180∘+360∘n
Solve 2x​=0+360∘n:x=720∘n
2x​=0+360∘n
0+360∘n=360∘n2x​=360∘n
Multiply both sides by 2
2x​=360∘n
Multiply both sides by 222x​=2⋅360∘n
Simplifyx=720∘n
x=720∘n
Solve 2x​=180∘+360∘n:x=360∘+720∘n
2x​=180∘+360∘n
Multiply both sides by 2
2x​=180∘+360∘n
Multiply both sides by 222x​=360∘+2⋅360∘n
Simplifyx=360∘+720∘n
x=360∘+720∘n
x=720∘n,x=360∘+720∘n
Solutions for the range 0≤x<360∘x=0
Combine all the solutionsx=0,x=120∘,x=240∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3=-3cos(θ)2cos(θ)-sqrt(3)=0,0<= θ<= 2pi-4sin(x)=cos^2(x)+1,0<= x<= 2pitan(2x)cos(2x)+cot(2x)sin(2x)=1sin^2(2x)-cos^2(2x)= 1/2

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)-cos(2x)=0,0<= x<360 ?

    The general solution for cos(x)-cos(2x)=0,0<= x<360 is x=0,x=120,x=240
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024