Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(y)+5tan(y)=3cos(y)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(y)+5tan(y)=3cos(y)

Solution

y=0.33983…+2πn,y=π−0.33983…+2πn
+1
Degrees
y=19.47122…∘+360∘n,y=160.52877…∘+360∘n
Solution steps
sec(y)+5tan(y)=3cos(y)
Subtract 3cos(y) from both sidessec(y)+5tan(y)−3cos(y)=0
Express with sin, coscos(y)1​+5⋅cos(y)sin(y)​−3cos(y)=0
Simplify cos(y)1​+5⋅cos(y)sin(y)​−3cos(y):cos(y)1+5sin(y)−3cos2(y)​
cos(y)1​+5⋅cos(y)sin(y)​−3cos(y)
Multiply 5⋅cos(y)sin(y)​:cos(y)5sin(y)​
5⋅cos(y)sin(y)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(y)sin(y)⋅5​
=cos(y)1​+cos(y)5sin(y)​−3cos(y)
Combine the fractions cos(y)1​+cos(y)5sin(y)​:cos(y)1+5sin(y)​
Apply rule ca​±cb​=ca±b​=cos(y)1+5sin(y)​
=cos(y)5sin(y)+1​−3cos(y)
Convert element to fraction: 3cos(y)=cos(y)3cos(y)cos(y)​=cos(y)1+sin(y)⋅5​−cos(y)3cos(y)cos(y)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(y)1+sin(y)⋅5−3cos(y)cos(y)​
1+sin(y)⋅5−3cos(y)cos(y)=1+5sin(y)−3cos2(y)
1+sin(y)⋅5−3cos(y)cos(y)
3cos(y)cos(y)=3cos2(y)
3cos(y)cos(y)
Apply exponent rule: ab⋅ac=ab+ccos(y)cos(y)=cos1+1(y)=3cos1+1(y)
Add the numbers: 1+1=2=3cos2(y)
=1+5sin(y)−3cos2(y)
=cos(y)1+5sin(y)−3cos2(y)​
cos(y)1+5sin(y)−3cos2(y)​=0
g(x)f(x)​=0⇒f(x)=01+5sin(y)−3cos2(y)=0
Add 3cos2(y) to both sides1+5sin(y)=3cos2(y)
Square both sides(1+5sin(y))2=(3cos2(y))2
Subtract (3cos2(y))2 from both sides(1+5sin(y))2−9cos4(y)=0
Factor (1+5sin(y))2−9cos4(y):(1+5sin(y)+3cos2(y))(1+5sin(y)−3cos2(y))
(1+5sin(y))2−9cos4(y)
Rewrite (1+5sin(y))2−9cos4(y) as (1+5sin(y))2−(3cos2(y))2
(1+5sin(y))2−9cos4(y)
Rewrite 9 as 32=(1+5sin(y))2−32cos4(y)
Apply exponent rule: abc=(ab)ccos4(y)=(cos2(y))2=(1+5sin(y))2−32(cos2(y))2
Apply exponent rule: ambm=(ab)m32(cos2(y))2=(3cos2(y))2=(1+5sin(y))2−(3cos2(y))2
=(1+5sin(y))2−(3cos2(y))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(1+5sin(y))2−(3cos2(y))2=((1+5sin(y))+3cos2(y))((1+5sin(y))−3cos2(y))=((1+5sin(y))+3cos2(y))((1+5sin(y))−3cos2(y))
Refine=(3cos2(y)+5sin(y)+1)(5sin(y)−3cos2(y)+1)
(1+5sin(y)+3cos2(y))(1+5sin(y)−3cos2(y))=0
Solving each part separately1+5sin(y)+3cos2(y)=0or1+5sin(y)−3cos2(y)=0
1+5sin(y)+3cos2(y)=0:y=arcsin(−6−5+73​​)+2πn,y=π+arcsin(6−5+73​​)+2πn
1+5sin(y)+3cos2(y)=0
Rewrite using trig identities
1+3cos2(y)+5sin(y)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1+3(1−sin2(y))+5sin(y)
Simplify 1+3(1−sin2(y))+5sin(y):5sin(y)−3sin2(y)+4
1+3(1−sin2(y))+5sin(y)
Expand 3(1−sin2(y)):3−3sin2(y)
3(1−sin2(y))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=sin2(y)=3⋅1−3sin2(y)
Multiply the numbers: 3⋅1=3=3−3sin2(y)
=1+3−3sin2(y)+5sin(y)
Add the numbers: 1+3=4=5sin(y)−3sin2(y)+4
=5sin(y)−3sin2(y)+4
4−3sin2(y)+5sin(y)=0
Solve by substitution
4−3sin2(y)+5sin(y)=0
Let: sin(y)=u4−3u2+5u=0
4−3u2+5u=0:u=−6−5+73​​,u=65+73​​
4−3u2+5u=0
Write in the standard form ax2+bx+c=0−3u2+5u+4=0
Solve with the quadratic formula
−3u2+5u+4=0
Quadratic Equation Formula:
For a=−3,b=5,c=4u1,2​=2(−3)−5±52−4(−3)⋅4​​
u1,2​=2(−3)−5±52−4(−3)⋅4​​
52−4(−3)⋅4​=73​
52−4(−3)⋅4​
Apply rule −(−a)=a=52+4⋅3⋅4​
Multiply the numbers: 4⋅3⋅4=48=52+48​
52=25=25+48​
Add the numbers: 25+48=73=73​
u1,2​=2(−3)−5±73​​
Separate the solutionsu1​=2(−3)−5+73​​,u2​=2(−3)−5−73​​
u=2(−3)−5+73​​:−6−5+73​​
2(−3)−5+73​​
Remove parentheses: (−a)=−a=−2⋅3−5+73​​
Multiply the numbers: 2⋅3=6=−6−5+73​​
Apply the fraction rule: −ba​=−ba​=−6−5+73​​
u=2(−3)−5−73​​:65+73​​
2(−3)−5−73​​
Remove parentheses: (−a)=−a=−2⋅3−5−73​​
Multiply the numbers: 2⋅3=6=−6−5−73​​
Apply the fraction rule: −b−a​=ba​−5−73​=−(5+73​)=65+73​​
The solutions to the quadratic equation are:u=−6−5+73​​,u=65+73​​
Substitute back u=sin(y)sin(y)=−6−5+73​​,sin(y)=65+73​​
sin(y)=−6−5+73​​,sin(y)=65+73​​
sin(y)=−6−5+73​​:y=arcsin(−6−5+73​​)+2πn,y=π+arcsin(6−5+73​​)+2πn
sin(y)=−6−5+73​​
Apply trig inverse properties
sin(y)=−6−5+73​​
General solutions for sin(y)=−6−5+73​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πny=arcsin(−6−5+73​​)+2πn,y=π+arcsin(6−5+73​​)+2πn
y=arcsin(−6−5+73​​)+2πn,y=π+arcsin(6−5+73​​)+2πn
sin(y)=65+73​​:No Solution
sin(y)=65+73​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsy=arcsin(−6−5+73​​)+2πn,y=π+arcsin(6−5+73​​)+2πn
1+5sin(y)−3cos2(y)=0:y=arcsin(31​)+2πn,y=π−arcsin(31​)+2πn
1+5sin(y)−3cos2(y)=0
Rewrite using trig identities
1−3cos2(y)+5sin(y)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−3(1−sin2(y))+5sin(y)
Simplify 1−3(1−sin2(y))+5sin(y):3sin2(y)+5sin(y)−2
1−3(1−sin2(y))+5sin(y)
Expand −3(1−sin2(y)):−3+3sin2(y)
−3(1−sin2(y))
Apply the distributive law: a(b−c)=ab−aca=−3,b=1,c=sin2(y)=−3⋅1−(−3)sin2(y)
Apply minus-plus rules−(−a)=a=−3⋅1+3sin2(y)
Multiply the numbers: 3⋅1=3=−3+3sin2(y)
=1−3+3sin2(y)+5sin(y)
Subtract the numbers: 1−3=−2=3sin2(y)+5sin(y)−2
=3sin2(y)+5sin(y)−2
−2+3sin2(y)+5sin(y)=0
Solve by substitution
−2+3sin2(y)+5sin(y)=0
Let: sin(y)=u−2+3u2+5u=0
−2+3u2+5u=0:u=31​,u=−2
−2+3u2+5u=0
Write in the standard form ax2+bx+c=03u2+5u−2=0
Solve with the quadratic formula
3u2+5u−2=0
Quadratic Equation Formula:
For a=3,b=5,c=−2u1,2​=2⋅3−5±52−4⋅3(−2)​​
u1,2​=2⋅3−5±52−4⋅3(−2)​​
52−4⋅3(−2)​=7
52−4⋅3(−2)​
Apply rule −(−a)=a=52+4⋅3⋅2​
Multiply the numbers: 4⋅3⋅2=24=52+24​
52=25=25+24​
Add the numbers: 25+24=49=49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
u1,2​=2⋅3−5±7​
Separate the solutionsu1​=2⋅3−5+7​,u2​=2⋅3−5−7​
u=2⋅3−5+7​:31​
2⋅3−5+7​
Add/Subtract the numbers: −5+7=2=2⋅32​
Multiply the numbers: 2⋅3=6=62​
Cancel the common factor: 2=31​
u=2⋅3−5−7​:−2
2⋅3−5−7​
Subtract the numbers: −5−7=−12=2⋅3−12​
Multiply the numbers: 2⋅3=6=6−12​
Apply the fraction rule: b−a​=−ba​=−612​
Divide the numbers: 612​=2=−2
The solutions to the quadratic equation are:u=31​,u=−2
Substitute back u=sin(y)sin(y)=31​,sin(y)=−2
sin(y)=31​,sin(y)=−2
sin(y)=31​:y=arcsin(31​)+2πn,y=π−arcsin(31​)+2πn
sin(y)=31​
Apply trig inverse properties
sin(y)=31​
General solutions for sin(y)=31​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πny=arcsin(31​)+2πn,y=π−arcsin(31​)+2πn
y=arcsin(31​)+2πn,y=π−arcsin(31​)+2πn
sin(y)=−2:No Solution
sin(y)=−2
−1≤sin(x)≤1NoSolution
Combine all the solutionsy=arcsin(31​)+2πn,y=π−arcsin(31​)+2πn
Combine all the solutionsy=arcsin(−6−5+73​​)+2πn,y=π+arcsin(6−5+73​​)+2πn,y=arcsin(31​)+2πn,y=π−arcsin(31​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sec(y)+5tan(y)=3cos(y)
Remove the ones that don't agree with the equation.
Check the solution arcsin(−6−5+73​​)+2πn:False
arcsin(−6−5+73​​)+2πn
Plug in n=1arcsin(−6−5+73​​)+2π1
For sec(y)+5tan(y)=3cos(y)plug iny=arcsin(−6−5+73​​)+2π1sec(arcsin(−6−5+73​​)+2π1)+5tan(arcsin(−6−5+73​​)+2π1)=3cos(arcsin(−6−5+73​​)+2π1)
Refine−2.42074…=2.42074…
⇒False
Check the solution π+arcsin(6−5+73​​)+2πn:False
π+arcsin(6−5+73​​)+2πn
Plug in n=1π+arcsin(6−5+73​​)+2π1
For sec(y)+5tan(y)=3cos(y)plug iny=π+arcsin(6−5+73​​)+2π1sec(π+arcsin(6−5+73​​)+2π1)+5tan(π+arcsin(6−5+73​​)+2π1)=3cos(π+arcsin(6−5+73​​)+2π1)
Refine2.42074…=−2.42074…
⇒False
Check the solution arcsin(31​)+2πn:True
arcsin(31​)+2πn
Plug in n=1arcsin(31​)+2π1
For sec(y)+5tan(y)=3cos(y)plug iny=arcsin(31​)+2π1sec(arcsin(31​)+2π1)+5tan(arcsin(31​)+2π1)=3cos(arcsin(31​)+2π1)
Refine2.82842…=2.82842…
⇒True
Check the solution π−arcsin(31​)+2πn:True
π−arcsin(31​)+2πn
Plug in n=1π−arcsin(31​)+2π1
For sec(y)+5tan(y)=3cos(y)plug iny=π−arcsin(31​)+2π1sec(π−arcsin(31​)+2π1)+5tan(π−arcsin(31​)+2π1)=3cos(π−arcsin(31​)+2π1)
Refine−2.82842…=−2.82842…
⇒True
y=arcsin(31​)+2πn,y=π−arcsin(31​)+2πn
Show solutions in decimal formy=0.33983…+2πn,y=π−0.33983…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-2sinh(t-2)=0cos(x)sin(x)+2cos^2(x)=0tan(x)= 130/45csc(pi/(42)x)=1arctan(4-2x)=arctan(2x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(y)+5tan(y)=3cos(y) ?

    The general solution for sec(y)+5tan(y)=3cos(y) is y=0.33983…+2pin,y=pi-0.33983…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024