Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(x))^{(sin(x))}= 1/(sqrt(2))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(sin(x))(sin(x))=2​1​

Solution

x=0.25268…+2πn,x=π−0.25268…+2πn,x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=14.47751…∘+360∘n,x=165.52248…∘+360∘n,x=30∘+360∘n,x=150∘+360∘n
Solution steps
(sin(x))(sin(x))=2​1​
Subtract 2​1​ from both sidessinsin(x)(x)−2​1​=0
Simplify sinsin(x)(x)−2​1​:2​2​sinsin(x)(x)−1​
sinsin(x)(x)−2​1​
Convert element to fraction: sinsin(x)(x)=2​sinsin(x)(x)2​​=2​sinsin(x)(x)2​​−2​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​sinsin(x)(x)2​−1​
2​2​sinsin(x)(x)−1​=0
g(x)f(x)​=0⇒f(x)=02​sinsin(x)(x)−1=0
Rewrite using trig identities
−1+sinsin(x)(x)2​
Use the basic trigonometric identity: sin(x)=csc(x)1​=−1+(csc(x)1​)csc(x)1​2​
−1+(csc(x)1​)csc(x)1​2​=0
Solve by substitution
−1+(csc(x)1​)csc(x)1​2​=0
Let: csc(x)=u−1+(u1​)u1​2​=0
−1+(u1​)u1​2​=0:u=4,u=2
−1+(u1​)u1​2​=0
Apply exponent rules
−1+(u1​)u1​2​=0
Apply exponent rule: f(x)g(x)=eg(x)ln(f(x))(u1​)u1​=eu1​ln(u1​)−1+eu1​ln(u1​)2​=0
−1+eu1​ln(u1​)2​=0
Add 1 to both sides−1+eu1​ln(u1​)2​+1=0+1
Simplify2​eu1​ln(u1​)=1
Divide both sides by 2​
2​eu1​ln(u1​)=1
Divide both sides by 2​2​2​eu1​ln(u1​)​=2​1​
Simplifyeu1​ln(u1​)=2​1​
eu1​ln(u1​)=2​1​
Simplifyeu1​ln(u1​)=22​​
Apply exponent rules
eu1​ln(u1​)=22​​
Convert to base 2:eu1​ln(u1​)=22−1​
Simplifyeu1​ln(u1​)=22−1​
eu1​ln(u1​)=22−1​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(eu1​ln(u1​))=ln(22−1​)
Apply log rule: ln(ea)=aln(eu1​ln(u1​))=u1​ln(u1​)u1​ln(u1​)=ln(22−1​)
Apply log rule: ln(xa)=a⋅ln(x)ln(22−1​)=2−1​ln(2)u1​ln(u1​)=2−1​ln(2)
u1​ln(u1​)=2−1​ln(2)
Solve u1​ln(u1​)=2−1​ln(2):u=4,u=2
u1​ln(u1​)=2−1​ln(2)
Multiply both sides by u
u1​ln(u1​)=2−1​ln(2)
Multiply both sides by uu1​ln(u1​)u=2−1​ln(2)u
Simplify
u1​ln(u1​)u=2−1​ln(2)u
Simplify u1​ln(u1​)u:ln(u1​)
u1​ln(u1​)u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅ln(u1​)u​
Cancel the common factor: u=1⋅ln(u1​)
Multiply: 1⋅ln(u1​)=ln(u1​)=ln(u1​)
Simplify 2−1​ln(2)u:−21​uln(2)
2−1​ln(2)u
Apply the fraction rule: b−a​=−ba​=−21​uln(2)
ln(u1​)=−21​uln(2)
ln(u1​)=−21​uln(2)
ln(u1​)=−21​uln(2)
If f(x)=g(x),then af(x)=ag(x)eln(u1​)=e−21​uln(2)
Simplify eln(u1​):u1​
eln(u1​)
Apply log rule: aloga​(b)=b=u1​
Simplify e−21​uln(2):2−21​u
e−21​uln(2)
Apply exponent rule: abc=(ab)c=(eln(2))−21​u
Apply log rule: aloga​(b)=beln(2)=2=2−21​u
u1​=2−21​u
Multiply both sides by uu1​u=2−21​uu
Simplify1=2−21​uu
Solve 1=2−21​uu:u=4,u=2
1=2−21​uu
Prepare 1=2−21​uufor Lambert form:1=e−21​ln(2)uu
1=2−21​uu
xex=ais equation in Lambert form
Apply exponent rules
1=2−21​uu
Convert to base e:1=eln(2)(−21​u)u
Apply exponent rule: a=blogb​(a)2−21​u=(eln(2))−21​u1=(eln(2))−21​uu
Apply exponent rule: (ab)c=abc(eln(2))−21​u=eln(2)(−21​u)1=eln(2)(−21​u)u
1=eln(2)(−21​u)u
Simplify1=e−21​ln(2)uu
1=e−21​ln(2)uu
Rewrite the equation with −21​uln(2)=v and u=−ln(2)2v​1=ev(−ln(2)2v​)
Rewrite 1=ev(−ln(2)2v​)in Lambert form:evv=−2ln(2)​
1=ev(−ln(2)2v​)
xex=ais equation in Lambert form
Switch sidesev(−ln(2)2v​)=1
Multiply both sides by ln(2)ev(−ln(2)2v​)ln(2)=1⋅ln(2)
Simplify−2evv=ln(2)
Divide both sides by −2−2−2evv​=−2ln(2)​
Simplifyevv=−2ln(2)​
Solve evv=−2ln(2)​:v=−2ln(2),v=−ln(2)
evv=−2ln(2)​
Solutions for xex=awhere −e1​≤a<0are principal and negative branches of Lambert Wfunction: x=W0​(a),W−1​(a)v=W−1​(−2ln(2)​),v=W0​(−2ln(2)​)
Simplifyv=−2ln(2),v=−ln(2)
v=−2ln(2),v=−ln(2)
Substitute back v=−21​uln(2),solve for u
Solve −21​uln(2)=−2ln(2):u=4
−21​uln(2)=−2ln(2)
Multiply both sides by −2
−21​uln(2)=−2ln(2)
Multiply both sides by −2(−21​uln(2))(−2)=(−2ln(2))(−2)
Simplifyln(2)u=4ln(2)
ln(2)u=4ln(2)
Divide both sides by ln(2)
ln(2)u=4ln(2)
Divide both sides by ln(2)ln(2)ln(2)u​=ln(2)4ln(2)​
Simplifyu=4
u=4
Solve −21​uln(2)=−ln(2):u=2
−21​uln(2)=−ln(2)
Multiply both sides by −2
−21​uln(2)=−ln(2)
Multiply both sides by −2(−21​uln(2))(−2)=(−ln(2))(−2)
Simplifyln(2)u=2ln(2)
ln(2)u=2ln(2)
Divide both sides by ln(2)
ln(2)u=2ln(2)
Divide both sides by ln(2)ln(2)ln(2)u​=ln(2)2ln(2)​
Simplifyu=2
u=2
u=4,u=2
u=4,u=2
Verify Solutions:u=4True,u=2True
Check the solutions by plugging them into u1​ln(u1​)=2−1​ln(2)
Remove the ones that don't agree with the equation.
Plug in u=4:True
41​ln(41​)=2−1​ln(2)
41​ln(41​)=−21​ln(2)
41​ln(41​)
Simplify ln(41​):−2ln(2)
ln(41​)
Apply log rule: loga​(x1​)=−loga​(x)=−ln(4)
Rewrite 4 in power-base form:4=22=−ln(22)
Apply log rule: loga​(xb)=b⋅loga​(x)ln(22)=2ln(2)=−2ln(2)
=41​(−2ln(2))
Remove parentheses: (−a)=−a=−41​⋅2ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=−41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=−21​ln(2)
2−1​ln(2)=−21​ln(2)
2−1​ln(2)
Apply the fraction rule: b−a​=−ba​=−21​ln(2)
−21​ln(2)=−21​ln(2)
True
Plug in u=2:True
21​ln(21​)=2−1​ln(2)
21​ln(21​)=−21​ln(2)
21​ln(21​)
Simplify ln(21​):−ln(2)
ln(21​)
Apply log rule: loga​(x1​)=−loga​(x)=−ln(2)
=21​(−ln(2))
Remove parentheses: (−a)=−a=−21​ln(2)
2−1​ln(2)=−21​ln(2)
2−1​ln(2)
Apply the fraction rule: b−a​=−ba​=−21​ln(2)
−21​ln(2)=−21​ln(2)
True
The solutions areu=4,u=2
u=4,u=2
Substitute back u=csc(x)csc(x)=4,csc(x)=2
csc(x)=4,csc(x)=2
csc(x)=4:x=arccsc(4)+2πn,x=π−arccsc(4)+2πn
csc(x)=4
Apply trig inverse properties
csc(x)=4
General solutions for csc(x)=4csc(x)=a⇒x=arccsc(a)+2πn,x=π−arccsc(a)+2πnx=arccsc(4)+2πn,x=π−arccsc(4)+2πn
x=arccsc(4)+2πn,x=π−arccsc(4)+2πn
csc(x)=2:x=6π​+2πn,x=65π​+2πn
csc(x)=2
General solutions for csc(x)=2
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Combine all the solutionsx=arccsc(4)+2πn,x=π−arccsc(4)+2πn,x=6π​+2πn,x=65π​+2πn
Show solutions in decimal formx=0.25268…+2πn,x=π−0.25268…+2πn,x=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(d^2-4)=cos^2(x)cos(3θ)=4cos(3θ)-3cos(θ)sin^2(x)-7sin(x)=0sin(x)=(48sin(69))/(47.5)2cos^2(3x)+cos(3x)-1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024