Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2sqrt(x)-3)=-1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2x​−3)=−1

Solution

x=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
Solution steps
tan(2x​−3)=−1
General solutions for tan(2x​−3)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
2x​−3=43π​+πn
2x​−3=43π​+πn
Solve 2x​−3=43π​+πn:x=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​{n>−32π296π+24π2​}
2x​−3=43π​+πn
Multiply both sides by 42x​⋅4−3⋅4=43π​⋅4+πn⋅4
Simplify8x​−12=3π+4πn
Move 12to the right side
8x​−12=3π+4πn
Add 12 to both sides8x​−12+12=3π+4πn+12
Simplify8x​=3π+4πn+12
8x​=3π+4πn+12
Divide both sides by 8
8x​=3π+4πn+12
Divide both sides by 888x​​=83π​+84πn​+812​
Simplify
88x​​=83π​+84πn​+812​
Simplify 88x​​:x​
88x​​
Divide the numbers: 88​=1=x​
Simplify 83π​+84πn​+812​:83π​+23​+2πn​
83π​+84πn​+812​
Group like terms=83π​+812​+84πn​
Cancel 812​:23​
812​
Cancel the common factor: 4=23​
=83π​+23​+84πn​
Cancel 84πn​:2πn​
84πn​
Cancel the common factor: 4=2πn​
=83π​+23​+2πn​
x​=83π​+23​+2πn​
x​=83π​+23​+2πn​
x​=83π​+23​+2πn​
Square both sides:x=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
x​=83π​+23​+2πn​
(x​)2=(83π​+23​+2πn​)2
Expand (x​)2:x
(x​)2
Apply radical rule: a​=a21​=(x21​)2
Apply exponent rule: (ab)c=abc=x21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=x
Expand (83π​+23​+2πn​)2:49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
(83π​+23​+2πn​)2
Combine the fractions 23​+2πn​:23+πn​
Apply rule ca​±cb​=ca±b​=23+πn​
=(83π​+2πn+3​)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=83π​,b=23+πn​
=(83π​)2+2⋅83π​⋅23+πn​+(23+πn​)2
Simplify (83π​)2+2⋅83π​⋅23+πn​+(23+πn​)2:649π2​+89π+3π2n​+49+6πn+π2n2​
(83π​)2+2⋅83π​⋅23+πn​+(23+πn​)2
(83π​)2=649π2​
(83π​)2
Apply exponent rule: (ba​)c=bcac​=82(3π)2​
Apply exponent rule: (a⋅b)n=anbn(3π)2=32π2=8232π2​
Refine=649π2​
2⋅83π​⋅23+πn​=89π+3π2n​
2⋅83π​⋅23+πn​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=8⋅23π(3+πn)⋅2​
Cancel the common factor: 2=83π(3+πn)​
Expand 3π(3+πn):9π+3π2n
3π(3+πn)
Apply the distributive law: a(b+c)=ab+aca=3π,b=3,c=πn=3π3+3ππn
=3⋅3π+3ππn
Simplify 3⋅3π+3ππn:9π+3π2n
3⋅3π+3ππn
3⋅3π=9π
3⋅3π
Multiply the numbers: 3⋅3=9=9π
3ππn=3π2n
3ππn
Apply exponent rule: ab⋅ac=ab+cππ=π1+1=3π1+1n
Add the numbers: 1+1=2=3π2n
=9π+3π2n
=9π+3π2n
=89π+3π2n​
(23+πn​)2=49+6πn+π2n2​
(23+πn​)2
Apply exponent rule: (ba​)c=bcac​=22(3+πn)2​
(3+πn)2=9+6πn+π2n2
(3+πn)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=3,b=πn
=32+2⋅3πn+(πn)2
Simplify 32+2⋅3πn+(πn)2:9+6πn+π2n2
32+2⋅3πn+(πn)2
32=9=9+2⋅3πn+(πn)2
Multiply the numbers: 2⋅3=6=9+6πn+(πn)2
Apply exponent rule: (a⋅b)n=anbn=9+6πn+π2n2
=9+6πn+π2n2
=229+6πn+π2n2​
22=4=49+6πn+π2n2​
=649π2​+83π2n+9π​+4π2n2+6πn+9​
=649π2​+89π+3π2n​+49+6πn+π2n2​
Apply the fraction rule: ca±b​=ca​±cb​89π+3π2n​=89π​+83π2n​=649π2​+89π​+83π2n​+4π2n2+6πn+9​
Apply the fraction rule: ca±b​=ca​±cb​49+6πn+π2n2​=49​+46πn​+4π2n2​=649π2​+89π​+83π2n​+49​+46πn​+4π2n2​
Group like terms=49​+89π​+649π2​+46πn​+83π2n​+4π2n2​
Cancel 46πn​:23πn​
46πn​
Cancel the common factor: 2=23πn​
=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
x=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
x=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
Verify Solutions:x=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​{n>−32π296π+24π2​}
Check the solutions by plugging them into 2x​−3=43π​+πn
Remove the ones that don't agree with the equation.
Plugx=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​:249​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−3=43π​+πn⇒n>−32π296π+24π2​
249​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−3=43π​+πn
Multiply both sides by 4249​+89π​+649π2​+23πn​+83π2n​+4π2n2​​⋅4−3⋅4=43π​⋅4+πn⋅4
Simplify849​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−12=3π+4πn
Remove square roots
849​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−12=3π+4πn
Add 12 to both sides849​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−12+12=3π+4πn+12
Simplify849​+89π​+649π2​+23πn​+83π2n​+4π2n2​​=3π+4πn+12
Square both sides:16π2n2+144+24π2n+72π+9π2+96πn=9π2+24π2n+72π+16π2n2+96πn+144
849​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−12=3π+4πn
(849​+89π​+649π2​+23πn​+83π2n​+4π2n2​​)2=(3π+4πn+12)2
Expand (849​+89π​+649π2​+23πn​+83π2n​+4π2n2​​)2:16π2n2+144+24π2n+72π+9π2+96πn
(849​+89π​+649π2​+23πn​+83π2n​+4π2n2​​)2
Apply exponent rule: (a⋅b)n=anbn=82(49​+89π​+649π2​+23πn​+83π2n​+4π2n2​​)2
(49​+89π​+649π2​+23πn​+83π2n​+4π2n2​​)2:49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
Apply radical rule: a​=a21​=((49​+89π​+649π2​+23πn​+83π2n​+4π2n2​)21​)2
Apply exponent rule: (ab)c=abc=(49​+89π​+649π2​+23πn​+83π2n​+4π2n2​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
=82(49​+89π​+649π2​+23πn​+83π2n​+4π2n2​)
82=64=64(49​+89π​+649π2​+23πn​+83π2n​+4π2n2​)
Expand 64(49​+89π​+649π2​+23πn​+83π2n​+4π2n2​):16π2n2+144+24π2n+72π+9π2+96πn
64(49​+89π​+649π2​+23πn​+83π2n​+4π2n2​)
Simplify 49​+89π​+649π2​+23πn​+83π2n​+4π2n2​:4π2n2+9​+83π2n+9π​+23πn​+649π2​
49​+89π​+649π2​+23πn​+83π2n​+4π2n2​
Combine the fractions 49​+4π2n2​:49+π2n2​
Apply rule ca​±cb​=ca±b​=49+π2n2​
=4π2n2+9​+89π​+649π2​+23πn​+83π2n​
Combine the fractions 89π​+83π2n​:89π+3π2n​
Apply rule ca​±cb​=ca±b​=89π+3π2n​
=4π2n2+9​+83π2n+9π​+649π2​+23πn​
=64(4π2n2+9​+83π2n+9π​+23πn​+649π2​)
Distribute parentheses=64⋅49+π2n2​+64⋅89π+3π2n​+64⋅649π2​+64⋅23πn​
Simplify 64⋅49+π2n2​+64⋅89π+3π2n​+64⋅649π2​+64⋅23πn​:16π2n2+144+24π2n+72π+9π2+96πn
64⋅49+π2n2​+64⋅89π+3π2n​+64⋅649π2​+64⋅23πn​
64⋅49+π2n2​=16π2n2+144
64⋅49+π2n2​
Multiply fractions: a⋅cb​=ca⋅b​=4(9+π2n2)⋅64​
Divide the numbers: 464​=16=16(π2n2+9)
Apply the distributive law: a(b+c)=ab+aca=16,b=π2n2,c=9=16π2n2+16⋅9
Multiply the numbers: 16⋅9=144=16π2n2+144
64⋅89π+3π2n​=24π2n+72π
64⋅89π+3π2n​
Multiply fractions: a⋅cb​=ca⋅b​=8(9π+3π2n)⋅64​
Divide the numbers: 864​=8=8(3π2n+9π)
Apply the distributive law: a(b+c)=ab+aca=8,b=3π2n,c=9π=8⋅3π2n+8⋅9π
Simplify 8⋅3π2n+8⋅9π:24π2n+72π
8⋅3π2n+8⋅9π
Multiply the numbers: 8⋅3=24=24π2n+8⋅9π
Multiply the numbers: 8⋅9=72=24π2n+72π
=24π2n+72π
64⋅649π2​=9π2
64⋅649π2​
Multiply fractions: a⋅cb​=ca⋅b​=649π2⋅64​
Cancel the common factor: 64=9π2
64⋅23πn​=96πn
64⋅23πn​
Multiply fractions: a⋅cb​=ca⋅b​=23πn⋅64​
Multiply the numbers: 3⋅64=192=2192πn​
Divide the numbers: 2192​=96=96πn
=16π2n2+144+24π2n+72π+9π2+96πn
=16π2n2+144+24π2n+72π+9π2+96πn
=16π2n2+144+24π2n+72π+9π2+96πn
Expand (3π+4πn+12)2:9π2+24π2n+72π+16π2n2+96πn+144
(3π+4πn+12)2
(3π+4πn+12)2=(3π+4πn+12)(3π+4πn+12)=(3π+4πn+12)(3π+4πn+12)
Expand (3π+4πn+12)(3π+4πn+12):9π2+24π2n+72π+16π2n2+96πn+144
(3π+4πn+12)(3π+4πn+12)
Distribute parentheses=3π3π+3π4πn+3π12+4πn⋅3π+4πn⋅4πn+4πn⋅12+12⋅3π+12⋅4πn+12⋅12
=3⋅3ππ+3⋅4ππn+3⋅12π+4⋅3ππn+4⋅4ππnn+4⋅12πn+12⋅3π+12⋅4πn+12⋅12
Simplify 3⋅3ππ+3⋅4ππn+3⋅12π+4⋅3ππn+4⋅4ππnn+4⋅12πn+12⋅3π+12⋅4πn+12⋅12:9π2+24π2n+72π+16π2n2+96πn+144
3⋅3ππ+3⋅4ππn+3⋅12π+4⋅3ππn+4⋅4ππnn+4⋅12πn+12⋅3π+12⋅4πn+12⋅12
Add similar elements: 3⋅12π+12⋅3π=2⋅12⋅3π=3⋅3ππ+3⋅4ππn+2⋅12⋅3π+4⋅3ππn+4⋅4ππnn+4⋅12πn+12⋅4πn+12⋅12
Add similar elements: 4⋅12πn+12⋅4πn=2⋅12⋅4πn=3⋅3ππ+3⋅4ππn+2⋅12⋅3π+4⋅3ππn+4⋅4ππnn+2⋅12⋅4πn+12⋅12
Add similar elements: 3⋅4ππn+4⋅3ππn=2⋅4⋅3ππn=3⋅3ππ+2⋅4⋅3ππn+2⋅12⋅3π+4⋅4ππnn+2⋅12⋅4πn+12⋅12
3⋅3ππ=9π2
3⋅3ππ
Multiply the numbers: 3⋅3=9=9ππ
Apply exponent rule: ab⋅ac=ab+cππ=π1+1=9π1+1
Add the numbers: 1+1=2=9π2
2⋅4⋅3ππn=24π2n
2⋅4⋅3ππn
Multiply the numbers: 2⋅4⋅3=24=24ππn
Apply exponent rule: ab⋅ac=ab+cππ=π1+1=24π1+1n
Add the numbers: 1+1=2=24π2n
2⋅12⋅3π=72π
2⋅12⋅3π
Multiply the numbers: 2⋅12⋅3=72=72π
4⋅4ππnn=16π2n2
4⋅4ππnn
Multiply the numbers: 4⋅4=16=16ππnn
Apply exponent rule: ab⋅ac=ab+cnn=n1+1=16ππn1+1
Add the numbers: 1+1=2=16ππn2
Apply exponent rule: ab⋅ac=ab+cππ=π1+1=16π1+1n2
Add the numbers: 1+1=2=16π2n2
2⋅12⋅4πn=96πn
2⋅12⋅4πn
Multiply the numbers: 2⋅12⋅4=96=96πn
12⋅12=144
12⋅12
Multiply the numbers: 12⋅12=144=144
=9π2+24π2n+72π+16π2n2+96πn+144
=9π2+24π2n+72π+16π2n2+96πn+144
=9π2+24π2n+72π+16π2n2+96πn+144
16π2n2+144+24π2n+72π+9π2+96πn=9π2+24π2n+72π+16π2n2+96πn+144
16π2n2+144+24π2n+72π+9π2+96πn=9π2+24π2n+72π+16π2n2+96πn+144
16π2n2+144+24π2n+72π+9π2+96πn=9π2+24π2n+72π+16π2n2+96πn+144
Solve 16π2n2+144+24π2n+72π+9π2+96πn=9π2+24π2n+72π+16π2n2+96πn+144:True for all n
16π2n2+144+24π2n+72π+9π2+96πn=9π2+24π2n+72π+16π2n2+96πn+144
Subtract 16π2n2+144+24π2n+72π+9π2+96πn from both sides16π2n2+144+24π2n+72π+9π2+96πn−(16π2n2+144+24π2n+72π+9π2+96πn)=9π2+24π2n+72π+16π2n2+96πn+144−(16π2n2+144+24π2n+72π+9π2+96πn)
Simplify0=0
Both sides are equalTrueforalln
Trueforalln
Verify Solutions:n<−32π296π+24π2​False,n=−32π296π+24π2​False,n>−32π296π+24π2​True
249​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−3=43π​+πn
Combine domain interval with solution interval:Trueforalln
Find the function intervals:n<−32π296π+24π2​,n=−32π296π+24π2​,n>−32π296π+24π2​
249​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−3=43π​+πn
Find the even roots arguments zeroes:
Solve 49​+89π​+649π2​+23πn​+83π2n​+4π2n2​=0:n=−32π296π+24π2​
49​+89π​+649π2​+23πn​+83π2n​+4π2n2​=0
Find Least Common Multiplier of 4,8,64,2:64
4,8,64,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 8:2⋅2⋅2
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
Prime factorization of 64:2⋅2⋅2⋅2⋅2⋅2
64
64divides by 264=32⋅2=2⋅32
32divides by 232=16⋅2=2⋅2⋅16
16divides by 216=8⋅2=2⋅2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
4,8,64,2
=2⋅2⋅2⋅2⋅2⋅2
Multiply the numbers: 2⋅2⋅2⋅2⋅2⋅2=64=64
Multiply by LCM=6449​⋅64+89π​⋅64+649π2​⋅64+23πn​⋅64+83π2n​⋅64+4π2n2​⋅64=0⋅64
Simplify16π2n2+(96π+24π2)n+144+72π+9π2=0
Solve with the quadratic formula
16π2n2+(96π+24π2)n+144+72π+9π2=0
Quadratic Equation Formula:
For a=16π2,b=96π+24π2,c=144+72π+9π2n1,2​=2⋅16π2−(96π+24π2)±(96π+24π2)2−4⋅16π2(144+72π+9π2)​​
n1,2​=2⋅16π2−(96π+24π2)±(96π+24π2)2−4⋅16π2(144+72π+9π2)​​
(96π+24π2)2−4⋅16π2(144+72π+9π2)=0
(96π+24π2)2−4⋅16π2(144+72π+9π2)
Multiply the numbers: 4⋅16=64=(24π2+96π)2−64π2(9π2+72π+144)
(96π+24π2)2:9216π2+4608π3+576π4
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=96π,b=24π2
=(96π)2+2⋅96π24π2+(24π2)2
Simplify (96π)2+2⋅96π24π2+(24π2)2:9216π2+4608π3+576π4
(96π)2+2⋅96π24π2+(24π2)2
(96π)2=9216π2
(96π)2
Apply exponent rule: (a⋅b)n=anbn=962π2
962=9216=9216π2
2⋅96π24π2=4608π3
2⋅96π24π2
Multiply the numbers: 2⋅96⋅24=4608=4608π2π
Apply exponent rule: ab⋅ac=ab+cππ2=π1+2=4608π1+2
Add the numbers: 1+2=3=4608π3
(24π2)2=576π4
(24π2)2
Apply exponent rule: (a⋅b)n=anbn=242(π2)2
(π2)2:π4
Apply exponent rule: (ab)c=abc=π2⋅2
Multiply the numbers: 2⋅2=4=π4
=242π4
242=576=576π4
=9216π2+4608π3+576π4
=9216π2+4608π3+576π4
=9216π2+4608π3+576π4−64π2(144+72π+9π2)
Expand −64π2(144+72π+9π2):−9216π2−4608π3−576π4
−64π2(144+72π+9π2)
Distribute parentheses=(−64π2)⋅144+(−64π2)⋅72π+(−64π2)⋅9π2
Apply minus-plus rules+(−a)=−a=−64⋅144π2−64⋅72π2π−64⋅9π2π2
Simplify −64⋅144π2−64⋅72π2π−64⋅9π2π2:−9216π2−4608π3−576π4
−64⋅144π2−64⋅72π2π−64⋅9π2π2
64⋅144π2=9216π2
64⋅144π2
Multiply the numbers: 64⋅144=9216=9216π2
64⋅72π2π=4608π3
64⋅72π2π
Multiply the numbers: 64⋅72=4608=4608π2π
Apply exponent rule: ab⋅ac=ab+cπ2π=π2+1=4608π2+1
Add the numbers: 2+1=3=4608π3
64⋅9π2π2=576π4
64⋅9π2π2
Multiply the numbers: 64⋅9=576=576π2π2
Apply exponent rule: ab⋅ac=ab+cπ2π2=π2+2=576π2+2
Add the numbers: 2+2=4=576π4
=−9216π2−4608π3−576π4
=−9216π2−4608π3−576π4
=9216π2+4608π3+576π4−9216π2−4608π3−576π4
Simplify 9216π2+4608π3+576π4−9216π2−4608π3−576π4:0
9216π2+4608π3+576π4−9216π2−4608π3−576π4
Group like terms=576π4−576π4+4608π3−4608π3+9216π2−9216π2
Add similar elements: 9216π2−9216π2=0=576π4−576π4+4608π3−4608π3
Add similar elements: 4608π3−4608π3=0=576π4−576π4
Add similar elements: 576π4−576π4=0=0
=0
n1,2​=2⋅16π2−(96π+24π2)±0​​
n=2⋅16π2−(96π+24π2)​
2⋅16π2−(96π+24π2)​=−32π296π+24π2​
2⋅16π2−(96π+24π2)​
Multiply the numbers: 2⋅16=32=32π2−(24π2+96π)​
Apply the fraction rule: b−a​=−ba​=−32π2(96π+24π2)​
Remove parentheses: (a)=a=−32π296π+24π2​
n=−32π296π+24π2​
The solution to the quadratic equation is:n=−32π296π+24π2​
n=−32π296π+24π2​
The intervals are defined around the zeroes:n<−32π296π+24π2​,n=−32π296π+24π2​,n>−32π296π+24π2​
Combine intervals with domainn<−32π296π+24π2​,n=−32π296π+24π2​,n>−32π296π+24π2​
Check the solutions by plugging them into 249​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−3=43π​+πn
Remove the ones that don't agree with the equation.
Plugn<−32π296π+24π2​:249​+89π​+649π2​+23πn​+83π2n​+4π2n2​​−3=43π​+πn⇒False
The solution isn>−32π296π+24π2​
The solution isx=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​{n>−32π296π+24π2​}
x=49​+89π​+649π2​+23πn​+83π2n​+4π2n2​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)+5cos(x)-3=03cos^2(x)+4cos(x)-4=0sin(θ)=-27/1904sin(θ)=1+sin(θ)tan(θ)-sqrt(3)=0,0<= θ<= 2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024