Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1=sin(90-θ)-0.075cos(90-θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1=sin(90∘−θ)−0.075cos(90∘−θ)

Solution

θ=−0.14971…+360∘n,θ=360∘n
+1
Radians
θ=−0.14971…+2πn,θ=0+2πn
Solution steps
1=sin(90∘−θ)−0.075cos(90∘−θ)
Add 0.075cos(90∘−θ) to both sidessin(90∘−θ)=1+0.075cos(90∘−θ)
Square both sidessin2(90∘−θ)=(1+0.075cos(90∘−θ))2
Rewrite using trig identities
sin2(90∘−θ)=(1+0.075cos(90∘−θ))2
Rewrite using trig identities
sin(90∘−θ)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(90∘)cos(θ)−cos(90∘)sin(θ)
Simplify sin(90∘)cos(θ)−cos(90∘)sin(θ):cos(θ)
sin(90∘)cos(θ)−cos(90∘)sin(θ)
sin(90∘)cos(θ)=cos(θ)
sin(90∘)cos(θ)
Simplify sin(90∘):1
sin(90∘)
Use the following trivial identity:sin(90∘)=1
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=1⋅cos(θ)
Multiply: 1⋅cos(θ)=cos(θ)=cos(θ)
cos(90∘)sin(θ)=0
cos(90∘)sin(θ)
Simplify cos(90∘):0
cos(90∘)
Use the following trivial identity:cos(90∘)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅sin(θ)
Apply rule 0⋅a=0=0
=cos(θ)−0
cos(θ)−0=cos(θ)=cos(θ)
=cos(θ)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(90∘)cos(θ)+sin(90∘)sin(θ)
Simplify cos(90∘)cos(θ)+sin(90∘)sin(θ):sin(θ)
cos(90∘)cos(θ)+sin(90∘)sin(θ)
cos(90∘)cos(θ)=0
cos(90∘)cos(θ)
Simplify cos(90∘):0
cos(90∘)
Use the following trivial identity:cos(90∘)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅cos(θ)
Apply rule 0⋅a=0=0
sin(90∘)sin(θ)=sin(θ)
sin(90∘)sin(θ)
Simplify sin(90∘):1
sin(90∘)
Use the following trivial identity:sin(90∘)=1
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=1⋅sin(θ)
Multiply: 1⋅sin(θ)=sin(θ)=sin(θ)
=0+sin(θ)
0+sin(θ)=sin(θ)=sin(θ)
=sin(θ)
(cos(θ))2=(1+0.075sin(θ))2
Simplify (cos(θ))2:cos2(θ)
(cos(θ))2
Remove parentheses: (a)=a=cos2(θ)
cos2(θ)=(1+0.075sin(θ))2
cos2(θ)=(1+0.075sin(θ))2
Subtract (1+0.075sin(θ))2 from both sidescos2(θ)−1−0.15sin(θ)−0.005625sin2(θ)=0
Rewrite using trig identities
−1+cos2(θ)−0.005625sin2(θ)−0.15sin(θ)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−cos2(x)=sin2(x)=−0.005625sin2(θ)−0.15sin(θ)−sin2(θ)
Simplify=−1.005625sin2(θ)−0.15sin(θ)
−0.15sin(θ)−1.005625sin2(θ)=0
Solve by substitution
−0.15sin(θ)−1.005625sin2(θ)=0
Let: sin(θ)=u−0.15u−1.005625u2=0
−0.15u−1.005625u2=0:u=−2.011250.3​,u=0
−0.15u−1.005625u2=0
Write in the standard form ax2+bx+c=0−1.005625u2−0.15u=0
Solve with the quadratic formula
−1.005625u2−0.15u=0
Quadratic Equation Formula:
For a=−1.005625,b=−0.15,c=0u1,2​=2(−1.005625)−(−0.15)±(−0.15)2−4(−1.005625)⋅0​​
u1,2​=2(−1.005625)−(−0.15)±(−0.15)2−4(−1.005625)⋅0​​
(−0.15)2−4(−1.005625)⋅0​=0.15
(−0.15)2−4(−1.005625)⋅0​
Apply rule −(−a)=a=(−0.15)2+4⋅1.005625⋅0​
Apply exponent rule: (−a)n=an,if n is even(−0.15)2=0.152=0.152+4⋅0⋅1.005625​
Apply rule 0⋅a=0=0.152+0​
0.152+0=0.152=0.152​
Apply radical rule: assuming a≥0=0.15
u1,2​=2(−1.005625)−(−0.15)±0.15​
Separate the solutionsu1​=2(−1.005625)−(−0.15)+0.15​,u2​=2(−1.005625)−(−0.15)−0.15​
u=2(−1.005625)−(−0.15)+0.15​:−2.011250.3​
2(−1.005625)−(−0.15)+0.15​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅1.0056250.15+0.15​
Add the numbers: 0.15+0.15=0.3=−2⋅1.0056250.3​
Multiply the numbers: 2⋅1.005625=2.01125=−2.011250.3​
Apply the fraction rule: −ba​=−ba​=−2.011250.3​
u=2(−1.005625)−(−0.15)−0.15​:0
2(−1.005625)−(−0.15)−0.15​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅1.0056250.15−0.15​
Subtract the numbers: 0.15−0.15=0=−2⋅1.0056250​
Multiply the numbers: 2⋅1.005625=2.01125=−2.011250​
Apply the fraction rule: −ba​=−ba​=−2.011250​
Apply rule a0​=0,a=0=−0
=0
The solutions to the quadratic equation are:u=−2.011250.3​,u=0
Substitute back u=sin(θ)sin(θ)=−2.011250.3​,sin(θ)=0
sin(θ)=−2.011250.3​,sin(θ)=0
sin(θ)=−2.011250.3​:θ=arcsin(−2.011250.3​)+360∘n,θ=180∘+arcsin(2.011250.3​)+360∘n
sin(θ)=−2.011250.3​
Apply trig inverse properties
sin(θ)=−2.011250.3​
General solutions for sin(θ)=−2.011250.3​sin(x)=−a⇒x=arcsin(−a)+360∘n,x=180∘+arcsin(a)+360∘nθ=arcsin(−2.011250.3​)+360∘n,θ=180∘+arcsin(2.011250.3​)+360∘n
θ=arcsin(−2.011250.3​)+360∘n,θ=180∘+arcsin(2.011250.3​)+360∘n
sin(θ)=0:θ=360∘n,θ=180∘+360∘n
sin(θ)=0
General solutions for sin(θ)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=0+360∘n,θ=180∘+360∘n
θ=0+360∘n,θ=180∘+360∘n
Solve θ=0+360∘n:θ=360∘n
θ=0+360∘n
0+360∘n=360∘nθ=360∘n
θ=360∘n,θ=180∘+360∘n
Combine all the solutionsθ=arcsin(−2.011250.3​)+360∘n,θ=180∘+arcsin(2.011250.3​)+360∘n,θ=360∘n,θ=180∘+360∘n
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sin(90∘−θ)−0.075cos(90∘−θ)=1
Remove the ones that don't agree with the equation.
Check the solution arcsin(−2.011250.3​)+360∘n:True
arcsin(−2.011250.3​)+360∘n
Plug in n=1arcsin(−2.011250.3​)+360∘1
For sin(90∘−θ)−0.075cos(90∘−θ)=1plug inθ=arcsin(−2.011250.3​)+360∘1sin(90∘−(arcsin(−2.011250.3​)+360∘1))−0.075cos(90∘−(arcsin(−2.011250.3​)+360∘1))=1
Refine1=1
⇒True
Check the solution 180∘+arcsin(2.011250.3​)+360∘n:False
180∘+arcsin(2.011250.3​)+360∘n
Plug in n=1180∘+arcsin(2.011250.3​)+360∘1
For sin(90∘−θ)−0.075cos(90∘−θ)=1plug inθ=180∘+arcsin(2.011250.3​)+360∘1sin(90∘−(180∘+arcsin(2.011250.3​)+360∘1))−0.075cos(90∘−(180∘+arcsin(2.011250.3​)+360∘1))=1
Refine−0.97762…=1
⇒False
Check the solution 360∘n:True
360∘n
Plug in n=1360∘1
For sin(90∘−θ)−0.075cos(90∘−θ)=1plug inθ=360∘1sin(90∘−360∘1)−0.075cos(90∘−360∘1)=1
Refine1=1
⇒True
Check the solution 180∘+360∘n:False
180∘+360∘n
Plug in n=1180∘+360∘1
For sin(90∘−θ)−0.075cos(90∘−θ)=1plug inθ=180∘+360∘1sin(90∘−(180∘+360∘1))−0.075cos(90∘−(180∘+360∘1))=1
Refine−1=1
⇒False
θ=arcsin(−2.011250.3​)+360∘n,θ=360∘n
Show solutions in decimal formθ=−0.14971…+360∘n,θ=360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-6sin(θ)=-3sqrt(2)cos(x)=(4(1/2)-1)/3sin(x)= pi/4+(0pi)/2cos(2x)-sin(x)-1=0cos(x)= 5/20

Frequently Asked Questions (FAQ)

  • What is the general solution for 1=sin(90-θ)-0.075cos(90-θ) ?

    The general solution for 1=sin(90-θ)-0.075cos(90-θ) is θ=-0.14971…+360n,θ=360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024