Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,-2sin(2x)-2sin(4x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=πn,x=2π+2πn​,x=3π(3n+1)​,x=3π(3n+2)​
+1
Degrees
x=0∘+180∘n,x=90∘+180∘n,x=60∘+180∘n,x=120∘+180∘n
Solution steps
−2sin(2x)−2sin(4x)=0
Let: u=2x−2sin(u)−2sin(2u)=0
Rewrite using trig identities
−2sin(2u)−2sin(u)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=−2⋅2sin(u)cos(u)−2sin(u)
Simplify=−4sin(u)cos(u)−2sin(u)
−2sin(u)−4cos(u)sin(u)=0
Factor −2sin(u)−4cos(u)sin(u):−2sin(u)(2cos(u)+1)
−2sin(u)−4cos(u)sin(u)
Rewrite −4 as 2⋅2=−2sin(u)+2⋅2sin(u)cos(u)
Factor out common term −2sin(u)=−2sin(u)(1+2cos(u))
−2sin(u)(2cos(u)+1)=0
Solving each part separatelysin(u)=0or2cos(u)+1=0
sin(u)=0:u=2πn,u=π+2πn
sin(u)=0
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
2cos(u)+1=0:u=32π​+2πn,u=34π​+2πn
2cos(u)+1=0
Move 1to the right side
2cos(u)+1=0
Subtract 1 from both sides2cos(u)+1−1=0−1
Simplify2cos(u)=−1
2cos(u)=−1
Divide both sides by 2
2cos(u)=−1
Divide both sides by 222cos(u)​=2−1​
Simplifycos(u)=−21​
cos(u)=−21​
General solutions for cos(u)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=32π​+2πn,u=34π​+2πn
u=32π​+2πn,u=34π​+2πn
Combine all the solutionsu=2πn,u=π+2πn,u=32π​+2πn,u=34π​+2πn
Substitute back u=2x
2x=2πn:x=πn
2x=2πn
Divide both sides by 2
2x=2πn
Divide both sides by 222x​=22πn​
Simplifyx=πn
x=πn
2x=π+2πn:x=2π+2πn​
2x=π+2πn
Divide both sides by 2
2x=π+2πn
Divide both sides by 222x​=2π​+22πn​
Simplify
22x​=2π​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π​+22πn​:2π+2πn​
2π​+22πn​
Apply rule ca​±cb​=ca±b​=2π+2πn​
x=2π+2πn​
x=2π+2πn​
x=2π+2πn​
2x=32π​+2πn:x=3π(3n+1)​
2x=32π​+2πn
Divide both sides by 2
2x=32π​+2πn
Divide both sides by 222x​=232π​​+22πn​
Simplify
22x​=232π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 232π​​+22πn​:3π(3n+1)​
232π​​+22πn​
Apply rule ca​±cb​=ca±b​=232π​+2πn​
Join 32π​+2πn:32π+6πn​
32π​+2πn
Convert element to fraction: 2πn=32πn3​=32π​+32πn⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32π+2πn⋅3​
Multiply the numbers: 2⋅3=6=32π+6πn​
=232π+6πn​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π+6πn​
Multiply the numbers: 3⋅2=6=62π+6πn​
Factor 2π+6πn:2π(1+3n)
2π+6πn
Rewrite as=1⋅2π+3⋅2πn
Factor out common term 2π=2π(1+3n)
=62π(1+3n)​
Cancel the common factor: 2=3π(3n+1)​
x=3π(3n+1)​
x=3π(3n+1)​
x=3π(3n+1)​
2x=34π​+2πn:x=3π(3n+2)​
2x=34π​+2πn
Divide both sides by 2
2x=34π​+2πn
Divide both sides by 222x​=234π​​+22πn​
Simplify
22x​=234π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 234π​​+22πn​:3π(3n+2)​
234π​​+22πn​
Apply rule ca​±cb​=ca±b​=234π​+2πn​
Join 34π​+2πn:34π+6πn​
34π​+2πn
Convert element to fraction: 2πn=32πn3​=34π​+32πn⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=34π+2πn⋅3​
Multiply the numbers: 2⋅3=6=34π+6πn​
=234π+6πn​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅24π+6πn​
Multiply the numbers: 3⋅2=6=64π+6πn​
Factor 4π+6πn:2π(2+3n)
4π+6πn
Rewrite as=2⋅2π+3⋅2πn
Factor out common term 2π=2π(2+3n)
=62π(2+3n)​
Cancel the common factor: 2=3π(3n+2)​
x=3π(3n+2)​
x=3π(3n+2)​
x=3π(3n+2)​
x=πn,x=2π+2πn​,x=3π(3n+1)​,x=3π(3n+2)​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6.15=220sin(377t)solvefor x,sqrt(3)sec(5x)-2=0cos(t)+cos(2t)=0,sin(t)+sin(2t)=0-3cos^2(θ)-sin(θ)+3=sin(θ)sin(x)= 14/16
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024