Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

50sec^2(5x)tan(5x)=25+tan^2(5x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

50sec2(5x)tan(5x)=25+tan2(5x)

Solution

x=50.40289…​+5πn​
+1
Degrees
x=4.61683…∘+36∘n
Solution steps
50sec2(5x)tan(5x)=25+tan2(5x)
Subtract 25+tan2(5x) from both sides50sec2(5x)tan(5x)−25−tan2(5x)=0
Rewrite using trig identities
−25−tan2(5x)+50sec2(5x)tan(5x)
Use the Pythagorean identity: sec2(x)=tan2(x)+1=−25−tan2(5x)+50(tan2(5x)+1)tan(5x)
−25−tan2(5x)+(1+tan2(5x))⋅50tan(5x)=0
Solve by substitution
−25−tan2(5x)+(1+tan2(5x))⋅50tan(5x)=0
Let: tan(5x)=u−25−u2+(1+u2)⋅50u=0
−25−u2+(1+u2)⋅50u=0:u≈0.42620…
−25−u2+(1+u2)⋅50u=0
Expand −25−u2+(1+u2)⋅50u:−25−u2+50u+50u3
−25−u2+(1+u2)⋅50u
=−25−u2+50u(1+u2)
Expand 50u(1+u2):50u+50u3
50u(1+u2)
Apply the distributive law: a(b+c)=ab+aca=50u,b=1,c=u2=50u⋅1+50uu2
=50⋅1⋅u+50u2u
Simplify 50⋅1⋅u+50u2u:50u+50u3
50⋅1⋅u+50u2u
50⋅1⋅u=50u
50⋅1⋅u
Multiply the numbers: 50⋅1=50=50u
50u2u=50u3
50u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=50u2+1
Add the numbers: 2+1=3=50u3
=50u+50u3
=50u+50u3
=−25−u2+50u+50u3
−25−u2+50u+50u3=0
Write in the standard form an​xn+…+a1​x+a0​=050u3−u2+50u−25=0
Find one solution for 50u3−u2+50u−25=0 using Newton-Raphson:u≈0.42620…
50u3−u2+50u−25=0
Newton-Raphson Approximation Definition
f(u)=50u3−u2+50u−25
Find f′(u):150u2−2u+50
dud​(50u3−u2+50u−25)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(50u3)−dud​(u2)+dud​(50u)−dud​(25)
dud​(50u3)=150u2
dud​(50u3)
Take the constant out: (a⋅f)′=a⋅f′=50dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=50⋅3u3−1
Simplify=150u2
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(50u)=50
dud​(50u)
Take the constant out: (a⋅f)′=a⋅f′=50dudu​
Apply the common derivative: dudu​=1=50⋅1
Simplify=50
dud​(25)=0
dud​(25)
Derivative of a constant: dxd​(a)=0=0
=150u2−2u+50−0
Simplify=150u2−2u+50
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.62626…:Δu1​=0.37373…
f(u0​)=50⋅13−12+50⋅1−25=74f′(u0​)=150⋅12−2⋅1+50=198u1​=0.62626…
Δu1​=∣0.62626…−1∣=0.37373…Δu1​=0.37373…
u2​=0.45706…:Δu2​=0.16919…
f(u1​)=50⋅0.62626…3−0.62626…2+50⋅0.62626…−25=18.20208…f′(u1​)=150⋅0.62626…2−2⋅0.62626…+50=107.57820…u2​=0.45706…
Δu2​=∣0.45706…−0.62626…∣=0.16919…Δu2​=0.16919…
u3​=0.42699…:Δu3​=0.03007…
f(u2​)=50⋅0.45706…3−0.45706…2+50⋅0.45706…−25=2.41849…f′(u2​)=150⋅0.45706…2−2⋅0.45706…+50=80.42199…u3​=0.42699…
Δu3​=∣0.42699…−0.45706…∣=0.03007…Δu3​=0.03007…
u4​=0.42621…:Δu4​=0.00078…
f(u3​)=50⋅0.42699…3−0.42699…2+50⋅0.42699…−25=0.05973…f′(u3​)=150⋅0.42699…2−2⋅0.42699…+50=76.49426…u4​=0.42621…
Δu4​=∣0.42621…−0.42699…∣=0.00078…Δu4​=0.00078…
u5​=0.42620…:Δu5​=5.03019E−7
f(u4​)=50⋅0.42621…3−0.42621…2+50⋅0.42621…−25=0.00003…f′(u4​)=150⋅0.42621…2−2⋅0.42621…+50=76.39588…u5​=0.42620…
Δu5​=∣0.42620…−0.42621…∣=5.03019E−7Δu5​=5.03019E−7
u≈0.42620…
Apply long division:u−0.42620…50u3−u2+50u−25​=50u2+20.31049…u+58.65653…
50u2+20.31049…u+58.65653…≈0
Find one solution for 50u2+20.31049…u+58.65653…=0 using Newton-Raphson:No Solution for u∈R
50u2+20.31049…u+58.65653…=0
Newton-Raphson Approximation Definition
f(u)=50u2+20.31049…u+58.65653…
Find f′(u):100u+20.31049…
dud​(50u2+20.31049…u+58.65653…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(50u2)+dud​(20.31049…u)+dud​(58.65653…)
dud​(50u2)=100u
dud​(50u2)
Take the constant out: (a⋅f)′=a⋅f′=50dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=50⋅2u2−1
Simplify=100u
dud​(20.31049…u)=20.31049…
dud​(20.31049…u)
Take the constant out: (a⋅f)′=a⋅f′=20.31049…dudu​
Apply the common derivative: dudu​=1=20.31049…⋅1
Simplify=20.31049…
dud​(58.65653…)=0
dud​(58.65653…)
Derivative of a constant: dxd​(a)=0=0
=100u+20.31049…+0
Simplify=100u+20.31049…
Let u0​=−3Compute un+1​ until Δun+1​<0.000001
u1​=−1.39920…:Δu1​=1.60079…
f(u0​)=50(−3)2+20.31049…(−3)+58.65653…=447.72504…f′(u0​)=100(−3)+20.31049…=−279.68950…u1​=−1.39920…
Δu1​=∣−1.39920…−(−3)∣=1.60079…Δu1​=1.60079…
u2​=−0.32800…:Δu2​=1.07120…
f(u1​)=50(−1.39920…)2+20.31049…(−1.39920…)+58.65653…=128.12693…f′(u1​)=100(−1.39920…)+20.31049…=−119.61018…u2​=−0.32800…
Δu2​=∣−0.32800…−(−1.39920…)∣=1.07120…Δu2​=1.07120…
u3​=4.26567…:Δu3​=4.59367…
f(u2​)=50(−0.32800…)2+20.31049…(−0.32800…)+58.65653…=57.37392…f′(u2​)=100(−0.32800…)+20.31049…=−12.48976…u3​=4.26567…
Δu3​=∣4.26567…−(−0.32800…)∣=4.59367…Δu3​=4.59367…
u4​=1.90464…:Δu4​=2.36103…
f(u3​)=50⋅4.26567…2+20.31049…⋅4.26567…+58.65653…=1055.09312…f′(u3​)=100⋅4.26567…+20.31049…=446.87787…u4​=1.90464…
Δu4​=∣1.90464…−4.26567…∣=2.36103…Δu4​=2.36103…
u5​=0.58226…:Δu5​=1.32237…
f(u4​)=50⋅1.90464…2+20.31049…⋅1.90464…+58.65653…=278.72369…f′(u4​)=100⋅1.90464…+20.31049…=210.77463…u5​=0.58226…
Δu5​=∣0.58226…−1.90464…∣=1.32237…Δu5​=1.32237…
u6​=−0.53102…:Δu6​=1.11328…
f(u5​)=50⋅0.58226…2+20.31049…⋅0.58226…+58.65653…=87.43414…f′(u5​)=100⋅0.58226…+20.31049…=78.53686…u6​=−0.53102…
Δu6​=∣−0.53102…−0.58226…∣=1.11328…Δu6​=1.11328…
u7​=1.35878…:Δu7​=1.88980…
f(u6​)=50(−0.53102…)2+20.31049…(−0.53102…)+58.65653…=61.97051…f′(u6​)=100(−0.53102…)+20.31049…=−32.79194…u7​=1.35878…
Δu7​=∣1.35878…−(−0.53102…)∣=1.88980…Δu7​=1.88980…
u8​=0.21549…:Δu8​=1.14328…
f(u7​)=50⋅1.35878…2+20.31049…⋅1.35878…+58.65653…=178.56892…f′(u7​)=100⋅1.35878…+20.31049…=156.18896…u8​=0.21549…
Δu8​=∣0.21549…−1.35878…∣=1.14328…Δu8​=1.14328…
u9​=−1.34577…:Δu9​=1.56127…
f(u8​)=50⋅0.21549…2+20.31049…⋅0.21549…+58.65653…=65.35533…f′(u8​)=100⋅0.21549…+20.31049…=41.86020…u9​=−1.34577…
Δu9​=∣−1.34577…−0.21549…∣=1.56127…Δu9​=1.56127…
u10​=−0.27916…:Δu10​=1.06661…
f(u9​)=50(−1.34577…)2+20.31049…(−1.34577…)+58.65653…=121.87917…f′(u9​)=100(−1.34577…)+20.31049…=−114.26742…u10​=−0.27916…
Δu10​=∣−0.27916…−(−1.34577…)∣=1.06661…Δu10​=1.06661…
u11​=7.19949…:Δu11​=7.47865…
f(u10​)=50(−0.27916…)2+20.31049…(−0.27916…)+58.65653…=56.88321…f′(u10​)=100(−0.27916…)+20.31049…=−7.60607…u11​=7.19949…
Δu11​=∣7.19949…−(−0.27916…)∣=7.47865…Δu11​=7.47865…
Cannot find solution
The solution isu≈0.42620…
Substitute back u=tan(5x)tan(5x)≈0.42620…
tan(5x)≈0.42620…
tan(5x)=0.42620…:x=5arctan(0.42620…)​+5πn​
tan(5x)=0.42620…
Apply trig inverse properties
tan(5x)=0.42620…
General solutions for tan(5x)=0.42620…tan(x)=a⇒x=arctan(a)+πn5x=arctan(0.42620…)+πn
5x=arctan(0.42620…)+πn
Solve 5x=arctan(0.42620…)+πn:x=5arctan(0.42620…)​+5πn​
5x=arctan(0.42620…)+πn
Divide both sides by 5
5x=arctan(0.42620…)+πn
Divide both sides by 555x​=5arctan(0.42620…)​+5πn​
Simplifyx=5arctan(0.42620…)​+5πn​
x=5arctan(0.42620…)​+5πn​
x=5arctan(0.42620…)​+5πn​
Combine all the solutionsx=5arctan(0.42620…)​+5πn​
Show solutions in decimal formx=50.40289…​+5πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(x)=8sin(3v)=sin(18)2sqrt(2)cos(θ)-2=0tan(x)= 22/3263cos(6x)=2

Frequently Asked Questions (FAQ)

  • What is the general solution for 50sec^2(5x)tan(5x)=25+tan^2(5x) ?

    The general solution for 50sec^2(5x)tan(5x)=25+tan^2(5x) is x=(0.40289…)/5+(pin)/5
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024