Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

13/12 =cosh(x/(120))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1213​=cosh(120x​)

Solution

x=120ln(23​)
+1
Degrees
x=2787.77273…∘
Solution steps
1213​=cosh(120x​)
Switch sidescosh(120x​)=1213​
Rewrite using trig identities
cosh(120x​)=1213​
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2e120x​+e−120x​​=1213​
2e120x​+e−120x​​=1213​
2e120x​+e−120x​​=1213​:x=120ln(23​)
2e120x​+e−120x​​=1213​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(e120x​+e−120x​)⋅12=2⋅13
Simplify(e120x​+e−120x​)⋅12=26
Apply exponent rules
(e120x​+e−120x​)⋅12=26
Apply exponent rule: abc=(ab)ce120x​=(ex)0.00833…,e−120x​=(ex)−0.00833…((ex)0.00833…+(ex)−0.00833…)⋅12=26
((ex)0.00833…+(ex)−0.00833…)⋅12=26
Rewrite the equation with ex=u((u)0.00833…+(u)−0.00833…)⋅12=26
Solve (u0.00833…+u−0.00833…)⋅12=26:u=21203120​,u=31202120​
(u0.00833…+u−0.00833…)⋅12=26
Expand (u0.00833…+u−0.00833…)⋅12:12u0.00833…+u0.00833…12​
(u0.00833…+u−0.00833…)⋅12
Apply exponent rule: a−b=ab1​=12(u0.00833…+u0.00833…1​)
Apply the distributive law: a(b+c)=ab+aca=12,b=u0.00833…,c=u0.00833…1​=12u0.00833…+12⋅u0.00833…1​
12⋅u0.00833…1​=u0.00833…12​
12⋅u0.00833…1​
Multiply fractions: a⋅cb​=ca⋅b​=u0.00833…1⋅12​
Multiply the numbers: 1⋅12=12=u0.00833…12​
=12u0.00833…+u0.00833…12​
12u0.00833…+u0.00833…12​=26
Rewrite the equation with 12v+v12​=26
Solve 12v+v12​=26:v=23​,v=32​
12v+v12​=26
Multiply both sides by v
12v+v12​=26
Multiply both sides by v12vv+v12​v=26v
Simplify
12vv+v12​v=26v
Simplify 12vv:12v2
12vv
Apply exponent rule: ab⋅ac=ab+cvv=v1+1=12v1+1
Add the numbers: 1+1=2=12v2
Simplify v12​v:12
v12​v
Multiply fractions: a⋅cb​=ca⋅b​=v12v​
Cancel the common factor: v=12
12v2+12=26v
12v2+12=26v
12v2+12=26v
Solve 12v2+12=26v:v=23​,v=32​
12v2+12=26v
Move 26vto the left side
12v2+12=26v
Subtract 26v from both sides12v2+12−26v=26v−26v
Simplify12v2+12−26v=0
12v2+12−26v=0
Write in the standard form ax2+bx+c=012v2−26v+12=0
Solve with the quadratic formula
12v2−26v+12=0
Quadratic Equation Formula:
For a=12,b=−26,c=12v1,2​=2⋅12−(−26)±(−26)2−4⋅12⋅12​​
v1,2​=2⋅12−(−26)±(−26)2−4⋅12⋅12​​
(−26)2−4⋅12⋅12​=10
(−26)2−4⋅12⋅12​
Apply exponent rule: (−a)n=an,if n is even(−26)2=262=262−4⋅12⋅12​
Multiply the numbers: 4⋅12⋅12=576=262−576​
262=676=676−576​
Subtract the numbers: 676−576=100=100​
Factor the number: 100=102=102​
Apply radical rule: 102​=10=10
v1,2​=2⋅12−(−26)±10​
Separate the solutionsv1​=2⋅12−(−26)+10​,v2​=2⋅12−(−26)−10​
v=2⋅12−(−26)+10​:23​
2⋅12−(−26)+10​
Apply rule −(−a)=a=2⋅1226+10​
Add the numbers: 26+10=36=2⋅1236​
Multiply the numbers: 2⋅12=24=2436​
Cancel the common factor: 12=23​
v=2⋅12−(−26)−10​:32​
2⋅12−(−26)−10​
Apply rule −(−a)=a=2⋅1226−10​
Subtract the numbers: 26−10=16=2⋅1216​
Multiply the numbers: 2⋅12=24=2416​
Cancel the common factor: 8=32​
The solutions to the quadratic equation are:v=23​,v=32​
v=23​,v=32​
Verify Solutions
Find undefined (singularity) points:v=0
Take the denominator(s) of 12v+v12​ and compare to zero
v=0
The following points are undefinedv=0
Combine undefined points with solutions:
v=23​,v=32​
v=23​,v=32​
Substitute back solve for u
Solve
Take both sides of the equation to the power of 120:u=21203120​
Expand
Apply radical rule: =(u1201​)120
Apply exponent rule: (ab)c=abc=u1201​⋅120
1201​⋅120=1
1201​⋅120
Multiply fractions: a⋅cb​=ca⋅b​=1201⋅120​
Cancel the common factor: 120=1
=u
Expand (23​)120:21203120​
(23​)120
Apply exponent rule: (ba​)c=bcac​=21203120​
u=21203120​
u=21203120​
Verify Solutions:u=21203120​True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in u=21203120​:True
Apply radical rule: assuming a≥0,b≥0
Apply radical rule: assuming a≥0
Apply radical rule: assuming a≥0=23​
23​=23​
True
The solution isu=21203120​
Solve
Take both sides of the equation to the power of 120:u=31202120​
Expand
Apply radical rule: =(u1201​)120
Apply exponent rule: (ab)c=abc=u1201​⋅120
1201​⋅120=1
1201​⋅120
Multiply fractions: a⋅cb​=ca⋅b​=1201⋅120​
Cancel the common factor: 120=1
=u
Expand (32​)120:31202120​
(32​)120
Apply exponent rule: (ba​)c=bcac​=31202120​
u=31202120​
u=31202120​
Verify Solutions:u=31202120​True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in u=31202120​:True
Apply radical rule: assuming a≥0,b≥0
Apply radical rule: assuming a≥0
Apply radical rule: assuming a≥0=32​
32​=32​
True
The solution isu=31202120​
u=21203120​,u=31202120​
Verify Solutions:u=21203120​True,u=31202120​True
Check the solutions by plugging them into (u0.00833…+u−0.00833…)12=26
Remove the ones that don't agree with the equation.
Plug in u=21203120​:True
((21203120​)0.00833…+(21203120​)−0.00833…)⋅12=26
((21203120​)0.00833…+(21203120​)−0.00833…)⋅12=26
((21203120​)0.00833…+(21203120​)−0.00833…)⋅12
(21203120​)0.00833…=1.5
(21203120​)0.00833…
21203120​=1.35192E21
21203120​
Convert element to a decimal form2120=1.32923E36=1.32923E363120​
Convert element to a decimal form3120=1.79701E57=1.32923E361.79701E57​
Divide the numbers: 1.32923E361.79701E57​=1.35192E21=1.35192E21
=1.35192E210.00833…
1.35192E210.00833…=1.5=1.5
(21203120​)−0.00833…=0.66666…
(21203120​)−0.00833…
21203120​=1.35192E21
21203120​
Convert element to a decimal form2120=1.32923E36=1.32923E363120​
Convert element to a decimal form3120=1.79701E57=1.32923E361.79701E57​
Divide the numbers: 1.32923E361.79701E57​=1.35192E21=1.35192E21
=1.35192E21−0.00833…
1.35192E21−0.00833…=0.66666…=0.66666…
=12(0.66666…+1.5)
Add the numbers: 1.5+0.66666…=2.16666…=12⋅2.16666…
Multiply the numbers: 2.16666…⋅12=26=26
26=26
True
Plug in u=31202120​:True
((31202120​)0.00833…+(31202120​)−0.00833…)⋅12=26
((31202120​)0.00833…+(31202120​)−0.00833…)⋅12=26
((31202120​)0.00833…+(31202120​)−0.00833…)⋅12
(31202120​)0.00833…=0.66666…
(31202120​)0.00833…
31202120​=7.39689E−22
31202120​
Convert element to a decimal form3120=1.79701E57=1.79701E572120​
Convert element to a decimal form2120=1.32923E36=1.79701E571.32923E36​
Divide the numbers: 1.79701E571.32923E36​=7.39689E−22=7.39689E−22
=7.39689E−220.00833…
7.39689E−220.00833…=0.66666…=0.66666…
(31202120​)−0.00833…=1.5
(31202120​)−0.00833…
31202120​=7.39689E−22
31202120​
Convert element to a decimal form3120=1.79701E57=1.79701E572120​
Convert element to a decimal form2120=1.32923E36=1.79701E571.32923E36​
Divide the numbers: 1.79701E571.32923E36​=7.39689E−22=7.39689E−22
=7.39689E−22−0.00833…
Apply exponent rule: a−b=ab1​=7.39689E−220.00833…1​
7.39689E−220.00833…=0.66666…=0.66666…1​
Divide the numbers: 0.66666…1​=1.5=1.5
=12(0.66666…+1.5)
Add the numbers: 0.66666…+1.5=2.16666…=12⋅2.16666…
Multiply the numbers: 2.16666…⋅12=26=26
26=26
True
The solutions areu=21203120​,u=31202120​
u=21203120​,u=31202120​
Substitute back u=ex,solve for x
Solve ex=21203120​:x=120ln(23​)
ex=21203120​
Apply exponent rules
ex=21203120​
Apply exponent rule: ab1​=a−b21201​=2−120ex=3120⋅2−120
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(3120⋅2−120)
Apply log rule: ln(ea)=aln(ex)=xx=ln(3120⋅2−120)
Simplify ln(3120⋅2−120):120ln(23​)
ln(3120⋅2−120)
Multiply 3120⋅2−120:21203120​
3120⋅2−120
Apply exponent rule: a−b=ab1​2−120=21201​=3120⋅21201​
Multiply fractions: a⋅cb​=ca⋅b​=21201⋅3120​
Multiply: 1⋅3120=3120=21203120​
=ln(21203120​)
Combine same powers : ynxn​=(yx​)n=ln((23​)120)
Apply log rule loga​(xb)=b⋅loga​(x), assuming x≥0=120ln(23​)
x=120ln(23​)
x=120ln(23​)
Solve ex=31202120​:No Solution for x∈R
ex=31202120​
Apply exponent rules
ex=31202120​
Apply exponent rule: ab1​=a−b31201​=3−120ex=2120⋅3−120
ex=2120⋅3−120
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=120ln(23​)
x=120ln(23​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)+sin(2x)=1sin(47)=cos(x)0.82=0.102cos(3.715t)sin^2(x)+0.49=16cos^2(θ)+sin^2(θ)=4

Frequently Asked Questions (FAQ)

  • What is the general solution for 13/12 =cosh(x/(120)) ?

    The general solution for 13/12 =cosh(x/(120)) is x=120ln(3/2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024