Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1-tan^4(a)cos^4(a)=1-2sin^2(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−tan4(a)cos4(a)=1−2sin2(a)

Solution

a=2πn,a=π+2πn
+1
Degrees
a=0∘+360∘n,a=180∘+360∘n
Solution steps
1−tan4(a)cos4(a)=1−2sin2(a)
Subtract 1−2sin2(a) from both sides2sin2(a)−tan4(a)cos4(a)=0
Factor 2sin2(a)−tan4(a)cos4(a):(2​sin(a)+tan2(a)cos2(a))(2​sin(a)−tan2(a)cos2(a))
2sin2(a)−tan4(a)cos4(a)
Rewrite tan4(a)cos4(a) as (tan(a)cos(a))4
tan4(a)cos4(a)
Apply exponent rule: ambm=(ab)mtan4(a)cos4(a)=(tan(a)cos(a))4=(tan(a)cos(a))4
=2sin2(a)−(tan(a)cos(a))4
Rewrite 2sin2(a)−(tan(a)cos(a))4 as (2​sin(a))2−((tan(a)cos(a))2)2
2sin2(a)−(tan(a)cos(a))4
Apply radical rule: a=(a​)22=(2​)2=(2​)2sin2(a)−(tan(a)cos(a))4
Apply exponent rule: abc=(ab)c(tan(a)cos(a))4=((tan(a)cos(a))2)2=(2​)2sin2(a)−((tan(a)cos(a))2)2
Apply exponent rule: ambm=(ab)m(2​)2sin2(a)=(2​sin(a))2=(2​sin(a))2−((tan(a)cos(a))2)2
=(2​sin(a))2−((tan(a)cos(a))2)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​sin(a))2−((tan(a)cos(a))2)2=(2​sin(a)+(tan(a)cos(a))2)(2​sin(a)−(tan(a)cos(a))2)=(2​sin(a)+(tan(a)cos(a))2)(2​sin(a)−(tan(a)cos(a))2)
Simplify (2​sin(a)+(tan(a)cos(a))2)(2​sin(a)−(tan(a)cos(a))2):(2​sin(a)+tan2(a)cos2(a))(2​sin(a)−tan2(a)cos2(a))
(2​sin(a)+(tan(a)cos(a))2)(2​sin(a)−(tan(a)cos(a))2)
Apply exponent rule: (a⋅b)n=anbn=(tan2(a)cos2(a)+2​sin(a))(2​sin(a)−(tan(a)cos(a))2)
Apply exponent rule: (a⋅b)n=anbn=(tan2(a)cos2(a)+2​sin(a))(2​sin(a)−tan2(a)cos2(a))
=(2​sin(a)+tan2(a)cos2(a))(2​sin(a)−tan2(a)cos2(a))
(2​sin(a)+tan2(a)cos2(a))(2​sin(a)−tan2(a)cos2(a))=0
Solving each part separately2​sin(a)+tan2(a)cos2(a)=0or2​sin(a)−tan2(a)cos2(a)=0
2​sin(a)+tan2(a)cos2(a)=0:a=2πn,a=π+2πn
2​sin(a)+tan2(a)cos2(a)=0
Rewrite using trig identities
cos2(a)tan2(a)+sin(a)2​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos2(a)(cos(a)sin(a)​)2+sin(a)2​
cos2(a)(cos(a)sin(a)​)2=sin2(a)
cos2(a)(cos(a)sin(a)​)2
(cos(a)sin(a)​)2=cos2(a)sin2(a)​
(cos(a)sin(a)​)2
Apply exponent rule: (ba​)c=bcac​=cos2(a)sin2(a)​
=cos2(a)sin2(a)​cos2(a)
Multiply fractions: a⋅cb​=ca⋅b​=cos2(a)sin2(a)cos2(a)​
Cancel the common factor: cos2(a)=sin2(a)
=sin2(a)+2​sin(a)
sin2(a)+sin(a)2​=0
Solve by substitution
sin2(a)+sin(a)2​=0
Let: sin(a)=uu2+u2​=0
u2+u2​=0:u=0,u=−2​
u2+u2​=0
Write in the standard form ax2+bx+c=0u2+2​u=0
Solve with the quadratic formula
u2+2​u=0
Quadratic Equation Formula:
For a=1,b=2​,c=0u1,2​=2⋅1−2​±(2​)2−4⋅1⋅0​​
u1,2​=2⋅1−2​±(2​)2−4⋅1⋅0​​
(2​)2−4⋅1⋅0​=2​
(2​)2−4⋅1⋅0​
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
4⋅1⋅0=0
4⋅1⋅0
Apply rule 0⋅a=0=0
=2−0​
Subtract the numbers: 2−0=2=2​
u1,2​=2⋅1−2​±2​​
Separate the solutionsu1​=2⋅1−2​+2​​,u2​=2⋅1−2​−2​​
u=2⋅1−2​+2​​:0
2⋅1−2​+2​​
Add similar elements: −2​+2​=0=2⋅10​
Multiply the numbers: 2⋅1=2=20​
Apply rule a0​=0,a=0=0
u=2⋅1−2​−2​​:−2​
2⋅1−2​−2​​
Add similar elements: −2​−2​=−22​=2⋅1−22​​
Multiply the numbers: 2⋅1=2=2−22​​
Apply the fraction rule: b−a​=−ba​=−222​​
Divide the numbers: 22​=1=−2​
The solutions to the quadratic equation are:u=0,u=−2​
Substitute back u=sin(a)sin(a)=0,sin(a)=−2​
sin(a)=0,sin(a)=−2​
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
General solutions for sin(a)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
Solve a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
sin(a)=−2​:No Solution
sin(a)=−2​
−1≤sin(x)≤1NoSolution
Combine all the solutionsa=2πn,a=π+2πn
2​sin(a)−tan2(a)cos2(a)=0:a=2πn,a=π+2πn
2​sin(a)−tan2(a)cos2(a)=0
Rewrite using trig identities
−cos2(a)tan2(a)+sin(a)2​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos2(a)(cos(a)sin(a)​)2+sin(a)2​
cos2(a)(cos(a)sin(a)​)2=sin2(a)
cos2(a)(cos(a)sin(a)​)2
(cos(a)sin(a)​)2=cos2(a)sin2(a)​
(cos(a)sin(a)​)2
Apply exponent rule: (ba​)c=bcac​=cos2(a)sin2(a)​
=cos2(a)sin2(a)​cos2(a)
Multiply fractions: a⋅cb​=ca⋅b​=cos2(a)sin2(a)cos2(a)​
Cancel the common factor: cos2(a)=sin2(a)
=−sin2(a)+2​sin(a)
−sin2(a)+sin(a)2​=0
Solve by substitution
−sin2(a)+sin(a)2​=0
Let: sin(a)=u−u2+u2​=0
−u2+u2​=0:u=0,u=2​
−u2+u2​=0
Write in the standard form ax2+bx+c=0−u2+2​u=0
Solve with the quadratic formula
−u2+2​u=0
Quadratic Equation Formula:
For a=−1,b=2​,c=0u1,2​=2(−1)−2​±(2​)2−4(−1)⋅0​​
u1,2​=2(−1)−2​±(2​)2−4(−1)⋅0​​
(2​)2−4(−1)⋅0​=2​
(2​)2−4(−1)⋅0​
Apply rule −(−a)=a=(2​)2+4⋅1⋅0​
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
4⋅1⋅0=0
4⋅1⋅0
Apply rule 0⋅a=0=0
=2+0​
Add the numbers: 2+0=2=2​
u1,2​=2(−1)−2​±2​​
Separate the solutionsu1​=2(−1)−2​+2​​,u2​=2(−1)−2​−2​​
u=2(−1)−2​+2​​:0
2(−1)−2​+2​​
Remove parentheses: (−a)=−a=−2⋅1−2​+2​​
Add similar elements: −2​+2​=0=−2⋅10​
Multiply the numbers: 2⋅1=2=−20​
Apply the fraction rule: −ba​=−ba​=−20​
Apply rule a0​=0,a=0=−0
=0
u=2(−1)−2​−2​​:2​
2(−1)−2​−2​​
Remove parentheses: (−a)=−a=−2⋅1−2​−2​​
Add similar elements: −2​−2​=−22​=−2⋅1−22​​
Multiply the numbers: 2⋅1=2=−2−22​​
Apply the fraction rule: −b−a​=ba​=222​​
Divide the numbers: 22​=1=2​
The solutions to the quadratic equation are:u=0,u=2​
Substitute back u=sin(a)sin(a)=0,sin(a)=2​
sin(a)=0,sin(a)=2​
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
General solutions for sin(a)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
Solve a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
sin(a)=2​:No Solution
sin(a)=2​
−1≤sin(x)≤1NoSolution
Combine all the solutionsa=2πn,a=π+2πn
Combine all the solutionsa=2πn,a=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(0.5x)=0.5,-pi<= x<= pisin(2x+30)=-(sqrt(3))/28tan^2(θ)-1=7tan(θ)sin(x+pi/4)=1solvefor x,z=sin(2x)+y^2

Frequently Asked Questions (FAQ)

  • What is the general solution for 1-tan^4(a)cos^4(a)=1-2sin^2(a) ?

    The general solution for 1-tan^4(a)cos^4(a)=1-2sin^2(a) is a=2pin,a=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024