Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(216)=cos^2(a)-sin^2(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(216∘)=cos2(a)−sin2(a)

Solution

a=1.25663…+360∘n,a=180∘−1.25663…+360∘n,a=−1.25663…+360∘n,a=180∘+1.25663…+360∘n
+1
Radians
a=1.25663…+2πn,a=π−1.25663…+2πn,a=−1.25663…+2πn,a=π+1.25663…+2πn
Solution steps
cos(216∘)=cos2(a)−sin2(a)
cos(216∘)=−45​+1​
cos(216∘)
Rewrite using trig identities:cos(144∘)
cos(216∘)
Use the following identity:cos(x)=cos(360∘−x)
cos(x)
Use the following property: cos(θ)=cos(−θ)cos(x)=cos(−x)=cos(−x)
Apply the periodicity of cos: cos(360∘+θ)=cos(θ)cos(−x)=cos(360∘−x)=cos(360∘−x)
=cos(360∘−216∘)
Simplify:360∘−216∘=144∘
360∘−216∘
Convert element to fraction: 360∘=360∘=360∘−216∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=5360∘5−1080∘​
360∘5−1080∘=720∘
360∘5−1080∘
Multiply the numbers: 2⋅5=10=1800∘−1080∘
Add similar elements: 1800∘−1080∘=720∘=720∘
=144∘
=cos(144∘)
=cos(144∘)
Rewrite using trig identities:−cos(36∘)
cos(144∘)
Use the basic trigonometric identity: cos(x)=−cos(180∘−x)=−cos(180∘−144∘)
Simplify:180∘−144∘=36∘
180∘−144∘
Convert element to fraction: 180∘=180∘=180∘−144∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=5180∘5−720∘​
Add similar elements: 900∘−720∘=180∘=36∘
=−cos(36∘)
=−cos(36∘)
Rewrite using trig identities:cos(36∘)=45​+1​
cos(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
=45​+1​
=−45​+1​
−45​+1​=cos2(a)−sin2(a)
Subtract cos2(a)−sin2(a) from both sides−45​+1​−cos2(a)+sin2(a)=0
Simplify −45​+1​−cos2(a)+sin2(a):4−5​−1−4cos2(a)+4sin2(a)​
−45​+1​−cos2(a)+sin2(a)
Convert element to fraction: cos2(a)=4cos2(a)4​,sin2(a)=4sin2(a)4​=−45​+1​−4cos2(a)⋅4​+4sin2(a)⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−(5​+1)−cos2(a)⋅4+sin2(a)⋅4​
Expand −(5​+1)−cos2(a)⋅4+sin2(a)⋅4:−5​−1−cos2(a)⋅4+sin2(a)⋅4
−(5​+1)−cos2(a)⋅4+sin2(a)⋅4
=−(5​+1)−4cos2(a)+4sin2(a)
−(5​+1):−5​−1
−(5​+1)
Distribute parentheses=−(5​)−(1)
Apply minus-plus rules+(−a)=−a=−5​−1
=−5​−1−cos2(a)⋅4+sin2(a)⋅4
=4−5​−1−4cos2(a)+4sin2(a)​
4−5​−1−4cos2(a)+4sin2(a)​=0
g(x)f(x)​=0⇒f(x)=0−5​−1−4cos2(a)+4sin2(a)=0
Rewrite using trig identities
−1−5​−4cos2(a)+4sin2(a)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−1−5​−4(1−sin2(a))+4sin2(a)
Simplify −1−5​−4(1−sin2(a))+4sin2(a):8sin2(a)−5−5​
−1−5​−4(1−sin2(a))+4sin2(a)
Expand −4(1−sin2(a)):−4+4sin2(a)
−4(1−sin2(a))
Apply the distributive law: a(b−c)=ab−aca=−4,b=1,c=sin2(a)=−4⋅1−(−4)sin2(a)
Apply minus-plus rules−(−a)=a=−4⋅1+4sin2(a)
Multiply the numbers: 4⋅1=4=−4+4sin2(a)
=−1−5​−4+4sin2(a)+4sin2(a)
Simplify −1−5​−4+4sin2(a)+4sin2(a):8sin2(a)−5−5​
−1−5​−4+4sin2(a)+4sin2(a)
Add similar elements: 4sin2(a)+4sin2(a)=8sin2(a)=−1−5​−4+8sin2(a)
Group like terms=8sin2(a)−1−5​−4
Subtract the numbers: −1−4=−5=8sin2(a)−5−5​
=8sin2(a)−5−5​
=8sin2(a)−5−5​
−5−5​+8sin2(a)=0
Solve by substitution
−5−5​+8sin2(a)=0
Let: sin(a)=u−5−5​+8u2=0
−5−5​+8u2=0:u=42​5+5​​​,u=−42​5+5​​​
−5−5​+8u2=0
Move 5to the right side
−5−5​+8u2=0
Add 5 to both sides−5−5​+8u2+5=0+5
Simplify−5​+8u2=5
−5​+8u2=5
Move 5​to the right side
−5​+8u2=5
Add 5​ to both sides−5​+8u2+5​=5+5​
Simplify8u2=5+5​
8u2=5+5​
Divide both sides by 8
8u2=5+5​
Divide both sides by 888u2​=85​+85​​
Simplify
88u2​=85​+85​​
Simplify 88u2​:u2
88u2​
Divide the numbers: 88​=1=u2
Simplify 85​+85​​:85+5​​
85​+85​​
Apply rule ca​±cb​=ca±b​=85+5​​
u2=85+5​​
u2=85+5​​
u2=85+5​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=85+5​​​,u=−85+5​​​
85+5​​​=42​5+5​​​
85+5​​​
Apply radical rule: assuming a≥0,b≥0=8​5+5​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​5+5​​​
Rationalize 22​5+5​​​:42​5+5​​​
22​5+5​​​
Multiply by the conjugate 2​2​​=22​2​5+5​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​5+5​​​
=42​5+5​​​
−85+5​​​=−42​5+5​​​
−85+5​​​
Simplify 85+5​​​:22​5+5​​​
85+5​​​
Apply radical rule: assuming a≥0,b≥0=8​5+5​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​5+5​​​
=−22​5+5​​​
Rationalize −22​5+5​​​:−42​5+5​​​
−22​5+5​​​
Multiply by the conjugate 2​2​​=−22​2​5+5​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=−42​5+5​​​
=−42​5+5​​​
u=42​5+5​​​,u=−42​5+5​​​
Substitute back u=sin(a)sin(a)=42​5+5​​​,sin(a)=−42​5+5​​​
sin(a)=42​5+5​​​,sin(a)=−42​5+5​​​
sin(a)=42​5+5​​​:a=arcsin(42​5+5​​​)+360∘n,a=180∘−arcsin(42​5+5​​​)+360∘n
sin(a)=42​5+5​​​
Apply trig inverse properties
sin(a)=42​5+5​​​
General solutions for sin(a)=42​5+5​​​sin(x)=a⇒x=arcsin(a)+360∘n,x=180∘−arcsin(a)+360∘na=arcsin(42​5+5​​​)+360∘n,a=180∘−arcsin(42​5+5​​​)+360∘n
a=arcsin(42​5+5​​​)+360∘n,a=180∘−arcsin(42​5+5​​​)+360∘n
sin(a)=−42​5+5​​​:a=arcsin(−42​5+5​​​)+360∘n,a=180∘+arcsin(42​5+5​​​)+360∘n
sin(a)=−42​5+5​​​
Apply trig inverse properties
sin(a)=−42​5+5​​​
General solutions for sin(a)=−42​5+5​​​sin(x)=−a⇒x=arcsin(−a)+360∘n,x=180∘+arcsin(a)+360∘na=arcsin(−42​5+5​​​)+360∘n,a=180∘+arcsin(42​5+5​​​)+360∘n
a=arcsin(−42​5+5​​​)+360∘n,a=180∘+arcsin(42​5+5​​​)+360∘n
Combine all the solutionsa=arcsin(42​5+5​​​)+360∘n,a=180∘−arcsin(42​5+5​​​)+360∘n,a=arcsin(−42​5+5​​​)+360∘n,a=180∘+arcsin(42​5+5​​​)+360∘n
Show solutions in decimal forma=1.25663…+360∘n,a=180∘−1.25663…+360∘n,a=−1.25663…+360∘n,a=180∘+1.25663…+360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

csc(-x)-1=cot^2(x)sin(x)=-cos^2(x)6/5 arccos(y/6)=pi4sin^2(x)-2=0,0<= x<= 2picsc^2(θ)=7cot(θ)+9
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024