Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot^2(t)csc(t)=sin(t)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot2(t)csc(t)=sin(t)

Solution

t=2.23703…+2πn,t=−2.23703…+2πn,t=0.90455…+2πn,t=2π−0.90455…+2πn
+1
Degrees
t=128.17270…∘+360∘n,t=−128.17270…∘+360∘n,t=51.82729…∘+360∘n,t=308.17270…∘+360∘n
Solution steps
cot2(t)csc(t)=sin(t)
Subtract sin(t) from both sidescot2(t)csc(t)−sin(t)=0
Express with sin, cos
−sin(t)+cot2(t)csc(t)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(t)+(sin(t)cos(t)​)2csc(t)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−sin(t)+(sin(t)cos(t)​)2sin(t)1​
Simplify −sin(t)+(sin(t)cos(t)​)2sin(t)1​:sin3(t)−sin4(t)+cos2(t)​
−sin(t)+(sin(t)cos(t)​)2sin(t)1​
(sin(t)cos(t)​)2sin(t)1​=sin3(t)cos2(t)​
(sin(t)cos(t)​)2sin(t)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(t)1⋅(sin(t)cos(t)​)2​
Multiply: 1⋅(sin(t)cos(t)​)2=(sin(t)cos(t)​)2=sin(t)(sin(t)cos(t)​)2​
(sin(t)cos(t)​)2=sin2(t)cos2(t)​
(sin(t)cos(t)​)2
Apply exponent rule: (ba​)c=bcac​=sin2(t)cos2(t)​
=sin(t)sin2(t)cos2(t)​​
Apply the fraction rule: acb​​=c⋅ab​=sin2(t)sin(t)cos2(t)​
sin2(t)sin(t)=sin3(t)
sin2(t)sin(t)
Apply exponent rule: ab⋅ac=ab+csin2(t)sin(t)=sin2+1(t)=sin2+1(t)
Add the numbers: 2+1=3=sin3(t)
=sin3(t)cos2(t)​
=−sin(t)+sin3(t)cos2(t)​
Convert element to fraction: sin(t)=sin3(t)sin(t)sin3(t)​=−sin3(t)sin(t)sin3(t)​+sin3(t)cos2(t)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin3(t)−sin(t)sin3(t)+cos2(t)​
−sin(t)sin3(t)+cos2(t)=−sin4(t)+cos2(t)
−sin(t)sin3(t)+cos2(t)
sin(t)sin3(t)=sin4(t)
sin(t)sin3(t)
Apply exponent rule: ab⋅ac=ab+csin(t)sin3(t)=sin1+3(t)=sin1+3(t)
Add the numbers: 1+3=4=sin4(t)
=−sin4(t)+cos2(t)
=sin3(t)−sin4(t)+cos2(t)​
=sin3(t)−sin4(t)+cos2(t)​
sin3(t)cos2(t)−sin4(t)​=0
g(x)f(x)​=0⇒f(x)=0cos2(t)−sin4(t)=0
Factor cos2(t)−sin4(t):(cos(t)+sin2(t))(cos(t)−sin2(t))
cos2(t)−sin4(t)
Apply exponent rule: abc=(ab)csin4(t)=(sin2(t))2=cos2(t)−(sin2(t))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(t)−(sin2(t))2=(cos(t)+sin2(t))(cos(t)−sin2(t))=(cos(t)+sin2(t))(cos(t)−sin2(t))
(cos(t)+sin2(t))(cos(t)−sin2(t))=0
Solving each part separatelycos(t)+sin2(t)=0orcos(t)−sin2(t)=0
cos(t)+sin2(t)=0:t=arccos(−2−1+5​​)+2πn,t=−arccos(−2−1+5​​)+2πn
cos(t)+sin2(t)=0
Rewrite using trig identities
cos(t)+sin2(t)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos(t)+1−cos2(t)
1+cos(t)−cos2(t)=0
Solve by substitution
1+cos(t)−cos2(t)=0
Let: cos(t)=u1+u−u2=0
1+u−u2=0:u=−2−1+5​​,u=21+5​​
1+u−u2=0
Write in the standard form ax2+bx+c=0−u2+u+1=0
Solve with the quadratic formula
−u2+u+1=0
Quadratic Equation Formula:
For a=−1,b=1,c=1u1,2​=2(−1)−1±12−4(−1)⋅1​​
u1,2​=2(−1)−1±12−4(−1)⋅1​​
12−4(−1)⋅1​=5​
12−4(−1)⋅1​
Apply rule 1a=112=1=1−4(−1)⋅1​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2(−1)−1±5​​
Separate the solutionsu1​=2(−1)−1+5​​,u2​=2(−1)−1−5​​
u=2(−1)−1+5​​:−2−1+5​​
2(−1)−1+5​​
Remove parentheses: (−a)=−a=−2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=−2−1+5​​
Apply the fraction rule: −ba​=−ba​=−2−1+5​​
u=2(−1)−1−5​​:21+5​​
2(−1)−1−5​​
Remove parentheses: (−a)=−a=−2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=−2−1−5​​
Apply the fraction rule: −b−a​=ba​−1−5​=−(1+5​)=21+5​​
The solutions to the quadratic equation are:u=−2−1+5​​,u=21+5​​
Substitute back u=cos(t)cos(t)=−2−1+5​​,cos(t)=21+5​​
cos(t)=−2−1+5​​,cos(t)=21+5​​
cos(t)=−2−1+5​​:t=arccos(−2−1+5​​)+2πn,t=−arccos(−2−1+5​​)+2πn
cos(t)=−2−1+5​​
Apply trig inverse properties
cos(t)=−2−1+5​​
General solutions for cos(t)=−2−1+5​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnt=arccos(−2−1+5​​)+2πn,t=−arccos(−2−1+5​​)+2πn
t=arccos(−2−1+5​​)+2πn,t=−arccos(−2−1+5​​)+2πn
cos(t)=21+5​​:No Solution
cos(t)=21+5​​
−1≤cos(x)≤1NoSolution
Combine all the solutionst=arccos(−2−1+5​​)+2πn,t=−arccos(−2−1+5​​)+2πn
cos(t)−sin2(t)=0:t=arccos(2−1+5​​)+2πn,t=2π−arccos(2−1+5​​)+2πn
cos(t)−sin2(t)=0
Rewrite using trig identities
cos(t)−sin2(t)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos(t)−(1−cos2(t))
−(1−cos2(t)):−1+cos2(t)
−(1−cos2(t))
Distribute parentheses=−(1)−(−cos2(t))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+cos2(t)
=cos(t)−1+cos2(t)
−1+cos(t)+cos2(t)=0
Solve by substitution
−1+cos(t)+cos2(t)=0
Let: cos(t)=u−1+u+u2=0
−1+u+u2=0:u=2−1+5​​,u=2−1−5​​
−1+u+u2=0
Write in the standard form ax2+bx+c=0u2+u−1=0
Solve with the quadratic formula
u2+u−1=0
Quadratic Equation Formula:
For a=1,b=1,c=−1u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
12−4⋅1⋅(−1)​=5​
12−4⋅1⋅(−1)​
Apply rule 1a=112=1=1−4⋅1⋅(−1)​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2⋅1−1±5​​
Separate the solutionsu1​=2⋅1−1+5​​,u2​=2⋅1−1−5​​
u=2⋅1−1+5​​:2−1+5​​
2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=2−1+5​​
u=2⋅1−1−5​​:2−1−5​​
2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=2−1−5​​
The solutions to the quadratic equation are:u=2−1+5​​,u=2−1−5​​
Substitute back u=cos(t)cos(t)=2−1+5​​,cos(t)=2−1−5​​
cos(t)=2−1+5​​,cos(t)=2−1−5​​
cos(t)=2−1+5​​:t=arccos(2−1+5​​)+2πn,t=2π−arccos(2−1+5​​)+2πn
cos(t)=2−1+5​​
Apply trig inverse properties
cos(t)=2−1+5​​
General solutions for cos(t)=2−1+5​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnt=arccos(2−1+5​​)+2πn,t=2π−arccos(2−1+5​​)+2πn
t=arccos(2−1+5​​)+2πn,t=2π−arccos(2−1+5​​)+2πn
cos(t)=2−1−5​​:No Solution
cos(t)=2−1−5​​
−1≤cos(x)≤1NoSolution
Combine all the solutionst=arccos(2−1+5​​)+2πn,t=2π−arccos(2−1+5​​)+2πn
Combine all the solutionst=arccos(−2−1+5​​)+2πn,t=−arccos(−2−1+5​​)+2πn,t=arccos(2−1+5​​)+2πn,t=2π−arccos(2−1+5​​)+2πn
Show solutions in decimal formt=2.23703…+2πn,t=−2.23703…+2πn,t=0.90455…+2πn,t=2π−0.90455…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6/12 =cos(θ)sin(a)=(6.88)/(6.9)sin(x)=cos(32)solvefor x,y=cos(4x)-0.002=sin(2pi*(3)-500pi(0)+x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024