Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x+1/6 pi)cos(x-1/6 pi)=cos(2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x+61​π)cos(x−61​π)=cos(2x)

Solution

x=65π​+πn,x=6π​+πn
+1
Degrees
x=150∘+180∘n,x=30∘+180∘n
Solution steps
cos(x+61​π)cos(x−61​π)=cos(2x)
Rewrite using trig identities
cos(x+61​π)cos(x−61​π)=cos(2x)
Rewrite using trig identities
cos(x+61​π)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(61​π)−sin(x)sin(61​π)
Simplify cos(x)cos(61​π)−sin(x)sin(61​π):23​​cos(x)−21​sin(x)
cos(x)cos(61​π)−sin(x)sin(61​π)
cos(x)cos(61​π)=23​​cos(x)
cos(x)cos(61​π)
Multiply 61​π:6π​
61​π
Multiply fractions: a⋅cb​=ca⋅b​=61π​
Multiply: 1π=π=6π​
=cos(6π​)cos(x)
Simplify cos(6π​):23​​
cos(6π​)
Use the following trivial identity:cos(6π​)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​cos(x)
sin(x)sin(61​π)=21​sin(x)
sin(x)sin(61​π)
Multiply 61​π:6π​
61​π
Multiply fractions: a⋅cb​=ca⋅b​=61π​
Multiply: 1π=π=6π​
=sin(6π​)sin(x)
Simplify sin(6π​):21​
sin(6π​)
Use the following trivial identity:sin(6π​)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=21​sin(x)
=23​​cos(x)−21​sin(x)
=23​​cos(x)−21​sin(x)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(x)cos(61​π)+sin(x)sin(61​π)
Simplify cos(x)cos(61​π)+sin(x)sin(61​π):23​​cos(x)+21​sin(x)
cos(x)cos(61​π)+sin(x)sin(61​π)
cos(x)cos(61​π)=23​​cos(x)
cos(x)cos(61​π)
Multiply 61​π:6π​
61​π
Multiply fractions: a⋅cb​=ca⋅b​=61π​
Multiply: 1π=π=6π​
=cos(6π​)cos(x)
Simplify cos(6π​):23​​
cos(6π​)
Use the following trivial identity:cos(6π​)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​cos(x)
sin(x)sin(61​π)=21​sin(x)
sin(x)sin(61​π)
Multiply 61​π:6π​
61​π
Multiply fractions: a⋅cb​=ca⋅b​=61π​
Multiply: 1π=π=6π​
=sin(6π​)sin(x)
Simplify sin(6π​):21​
sin(6π​)
Use the following trivial identity:sin(6π​)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=21​sin(x)
=23​​cos(x)+21​sin(x)
=23​​cos(x)+21​sin(x)
(23​​cos(x)−21​sin(x))(23​​cos(x)+21​sin(x))=cos(2x)
(23​​cos(x)−21​sin(x))(23​​cos(x)+21​sin(x))=cos(2x)
Subtract cos(2x) from both sides(23​​cos(x)−21​sin(x))(23​​cos(x)+21​sin(x))−cos(2x)=0
Simplify (23​​cos(x)−21​sin(x))(23​​cos(x)+21​sin(x))−cos(2x):4(3​cos(x)−sin(x))(3​cos(x)+sin(x))−4cos(2x)​
(23​​cos(x)−21​sin(x))(23​​cos(x)+21​sin(x))−cos(2x)
(23​​cos(x)−21​sin(x))(23​​cos(x)+21​sin(x))=4(3​cos(x)−sin(x))(3​cos(x)+sin(x))​
(23​​cos(x)−21​sin(x))(23​​cos(x)+21​sin(x))
23​​cos(x)=23​cos(x)​
23​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=23​cos(x)​
21​sin(x)=2sin(x)​
21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=2sin(x)​
=(23​cos(x)​−2sin(x)​)(23​​cos(x)+21​sin(x))
23​​cos(x)=23​cos(x)​
23​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=23​cos(x)​
21​sin(x)=2sin(x)​
21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=2sin(x)​
=(23​cos(x)​−2sin(x)​)(23​cos(x)​+2sin(x)​)
Simplify 23​cos(x)​−2sin(x)​:23​cos(x)−sin(x)​
23​cos(x)​−2sin(x)​
Apply rule ca​±cb​=ca±b​=23​cos(x)−sin(x)​
=23​cos(x)−sin(x)​(23​cos(x)​+2sin(x)​)
Combine the fractions 23​cos(x)​+2sin(x)​:23​cos(x)+sin(x)​
Apply rule ca​±cb​=ca±b​=23​cos(x)+sin(x)​
=23​cos(x)−sin(x)​(23​cos(x)+sin(x)​)
Remove parentheses: (a)=a=23​cos(x)−sin(x)​⋅23​cos(x)+sin(x)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅2(3​cos(x)−sin(x))(3​cos(x)+sin(x))​
Multiply the numbers: 2⋅2=4=4(3​cos(x)−sin(x))(3​cos(x)+sin(x))​
=4(3​cos(x)−sin(x))(3​cos(x)+sin(x))​−cos(2x)
Convert element to fraction: cos(2x)=4cos(2x)4​=4(3​cos(x)−sin(x))(3​cos(x)+sin(x))​−4cos(2x)⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4(3​cos(x)−sin(x))(3​cos(x)+sin(x))−cos(2x)⋅4​
4(3​cos(x)−sin(x))(3​cos(x)+sin(x))−4cos(2x)​=0
g(x)f(x)​=0⇒f(x)=0(3​cos(x)−sin(x))(3​cos(x)+sin(x))−4cos(2x)=0
Rewrite using trig identities
(−sin(x)+cos(x)3​)(sin(x)+cos(x)3​)−4cos(2x)
Use the Double Angle identity: cos(2x)=cos2(x)−sin2(x)=(−sin(x)+3​cos(x))(sin(x)+3​cos(x))−4(cos2(x)−sin2(x))
Simplify (−sin(x)+3​cos(x))(sin(x)+3​cos(x))−4(cos2(x)−sin2(x)):−cos2(x)+3sin2(x)
(−sin(x)+3​cos(x))(sin(x)+3​cos(x))−4(cos2(x)−sin2(x))
Expand (−sin(x)+3​cos(x))(sin(x)+3​cos(x)):3cos2(x)−sin2(x)
(−sin(x)+3​cos(x))(sin(x)+3​cos(x))
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=3​cos(x),b=sin(x)=(3​cos(x))2−sin2(x)
(3​cos(x))2=3cos2(x)
(3​cos(x))2
Apply exponent rule: (a⋅b)n=anbn=(3​)2cos2(x)
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3cos2(x)
=3cos2(x)−sin2(x)
=3cos2(x)−sin2(x)−4(cos2(x)−sin2(x))
Expand −4(cos2(x)−sin2(x)):−4cos2(x)+4sin2(x)
−4(cos2(x)−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−4,b=cos2(x),c=sin2(x)=−4cos2(x)−(−4)sin2(x)
Apply minus-plus rules−(−a)=a=−4cos2(x)+4sin2(x)
=3cos2(x)−sin2(x)−4cos2(x)+4sin2(x)
Simplify 3cos2(x)−sin2(x)−4cos2(x)+4sin2(x):−cos2(x)+3sin2(x)
3cos2(x)−sin2(x)−4cos2(x)+4sin2(x)
Add similar elements: 3cos2(x)−4cos2(x)=−cos2(x)=−cos2(x)−sin2(x)+4sin2(x)
Add similar elements: −sin2(x)+4sin2(x)=3sin2(x)=−cos2(x)+3sin2(x)
=−cos2(x)+3sin2(x)
=−cos2(x)+3sin2(x)
−cos2(x)+3sin2(x)=0
Factor −cos2(x)+3sin2(x):(3​sin(x)+cos(x))(3​sin(x)−cos(x))
−cos2(x)+3sin2(x)
Rewrite 3sin2(x)−cos2(x) as (3​sin(x))2−cos2(x)
3sin2(x)−cos2(x)
Apply radical rule: a=(a​)23=(3​)2=(3​)2sin2(x)−cos2(x)
Apply exponent rule: ambm=(ab)m(3​)2sin2(x)=(3​sin(x))2=(3​sin(x))2−cos2(x)
=(3​sin(x))2−cos2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​sin(x))2−cos2(x)=(3​sin(x)+cos(x))(3​sin(x)−cos(x))=(3​sin(x)+cos(x))(3​sin(x)−cos(x))
(3​sin(x)+cos(x))(3​sin(x)−cos(x))=0
Solving each part separately3​sin(x)+cos(x)=0or3​sin(x)−cos(x)=0
3​sin(x)+cos(x)=0:x=65π​+πn
3​sin(x)+cos(x)=0
Rewrite using trig identities
3​sin(x)+cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)3​sin(x)+cos(x)​=cos(x)0​
Simplifycos(x)3​sin(x)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)3​tan(x)+1=0
3​tan(x)+1=0
Move 1to the right side
3​tan(x)+1=0
Subtract 1 from both sides3​tan(x)+1−1=0−1
Simplify3​tan(x)=−1
3​tan(x)=−1
Divide both sides by 3​
3​tan(x)=−1
Divide both sides by 3​3​3​tan(x)​=3​−1​
Simplify
3​3​tan(x)​=3​−1​
Simplify 3​3​tan(x)​:tan(x)
3​3​tan(x)​
Cancel the common factor: 3​=tan(x)
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
tan(x)=−33​​
tan(x)=−33​​
tan(x)=−33​​
General solutions for tan(x)=−33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=65π​+πn
x=65π​+πn
3​sin(x)−cos(x)=0:x=6π​+πn
3​sin(x)−cos(x)=0
Rewrite using trig identities
3​sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)3​sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)3​sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)3​tan(x)−1=0
3​tan(x)−1=0
Move 1to the right side
3​tan(x)−1=0
Add 1 to both sides3​tan(x)−1+1=0+1
Simplify3​tan(x)=1
3​tan(x)=1
Divide both sides by 3​
3​tan(x)=1
Divide both sides by 3​3​3​tan(x)​=3​1​
Simplify
3​3​tan(x)​=3​1​
Simplify 3​3​tan(x)​:tan(x)
3​3​tan(x)​
Cancel the common factor: 3​=tan(x)
Simplify 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
tan(x)=33​​
tan(x)=33​​
tan(x)=33​​
General solutions for tan(x)=33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=6π​+πn
x=6π​+πn
Combine all the solutionsx=65π​+πn,x=6π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=0.731sin(x)=0.766sin(x)=0.7553tan^2(x)-5tan(x)+2=0solvefor θ,ρ=(4sin(φ)cos(θ))

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x+1/6 pi)cos(x-1/6 pi)=cos(2x) ?

    The general solution for cos(x+1/6 pi)cos(x-1/6 pi)=cos(2x) is x=(5pi)/6+pin,x= pi/6+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024