Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(pi/x)=(sqrt(3))/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(xπ​)=33​​

Solution

x=0.95531…+2πnπ​,x=2π−0.95531…+2πnπ​
+1
Degrees
x=0∘+24.86702…∘n,x=0∘+15.50246…∘n
Solution steps
cos(xπ​)=33​​
Apply trig inverse properties
cos(xπ​)=33​​
General solutions for cos(xπ​)=33​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnxπ​=arccos(33​​)+2πn,xπ​=2π−arccos(33​​)+2πn
xπ​=arccos(33​​)+2πn,xπ​=2π−arccos(33​​)+2πn
Solve xπ​=arccos(33​​)+2πn:x=arccos(3​1​)+2πnπ​;n=−2πarccos(3​1​)​
xπ​=arccos(33​​)+2πn
Multiply both sides by x
xπ​=arccos(33​​)+2πn
Multiply both sides by xxπ​x=arccos(33​​)x+2πnx
Simplifyπ=arccos(33​​)x+2πnx
π=arccos(33​​)x+2πnx
Switch sidesarccos(33​​)x+2πnx=π
Simplify arccos(33​​)x+2πnx:arccos(3​1​)x+2πnx
arccos(33​​)x+2πnx
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=arccos(3​1​)x+2πnx
arccos(3​1​)x+2πnx=π
arccos(33​​)x+2πnx=π
Factor arccos(33​​)x+2πnx:x(arccos(3​1​)+2πn)
arccos(33​​)x+2πnx
Factor out common term x=x(arccos(33​​)+2πn)
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=x(2πn+arccos(3​1​))
x(arccos(3​1​)+2πn)=π
Divide both sides by arccos(3​1​)+2πn;n=−2πarccos(3​1​)​
x(arccos(3​1​)+2πn)=π
Divide both sides by arccos(3​1​)+2πn;n=−2πarccos(3​1​)​arccos(3​1​)+2πnx(arccos(3​1​)+2πn)​=arccos(3​1​)+2πnπ​;n=−2πarccos(3​1​)​
Simplify
arccos(3​1​)+2πnx(arccos(3​1​)+2πn)​=arccos(3​1​)+2πnπ​
Simplify arccos(3​1​)+2πnx(arccos(3​1​)+2πn)​:x
arccos(3​1​)+2πnx(arccos(3​1​)+2πn)​
x(arccos(3​1​)+2πn)=x(arccos(33​​)+2πn)
x(arccos(3​1​)+2πn)
=x(2πn+arccos(33​​))
=arccos(3​1​)+2πnx(2πn+arccos(33​​))​
arccos(3​1​)+2πn=arccos(33​​)+2πn
arccos(3​1​)+2πn
=arccos(33​​)+2πn
=arccos(33​​)+2πnx(2πn+arccos(33​​))​
Cancel the common factor: arccos(33​​)+2πn=x
Simplify arccos(3​1​)+2πnπ​:arccos(33​​)+2πnπ​
arccos(3​1​)+2πnπ​
arccos(3​1​)+2πn=arccos(33​​)+2πn
arccos(3​1​)+2πn
=arccos(33​​)+2πn
=arccos(33​​)+2πnπ​
x=arccos(33​​)+2πnπ​;n=−2πarccos(3​1​)​
x=arccos(33​​)+2πnπ​;n=−2πarccos(3​1​)​
x=arccos(33​​)+2πnπ​;n=−2πarccos(3​1​)​
Simplify arccos(33​​)+2πnπ​:arccos(3​1​)+2πnπ​
arccos(33​​)+2πnπ​
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=arccos(3​1​)+2πnπ​
x=arccos(3​1​)+2πnπ​;n=−2πarccos(3​1​)​
Solve xπ​=2π−arccos(33​​)+2πn:x=2π−arccos(3​1​)+2πnπ​;n=2π−2π+arccos(3​1​)​
xπ​=2π−arccos(33​​)+2πn
Multiply both sides by x
xπ​=2π−arccos(33​​)+2πn
Multiply both sides by xxπ​x=2πx−arccos(33​​)x+2πnx
Simplifyπ=2πx−arccos(33​​)x+2πnx
π=2πx−arccos(33​​)x+2πnx
Switch sides2πx−arccos(33​​)x+2πnx=π
Simplify 2πx−arccos(33​​)x+2πnx:2πx−arccos(3​1​)x+2πnx
2πx−arccos(33​​)x+2πnx
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=2πx−arccos(3​1​)x+2πnx
2πx−arccos(3​1​)x+2πnx=π
2πx−arccos(33​​)x+2πnx=π
Factor 2πx−arccos(33​​)x+2πnx:x(2π−arccos(3​1​)+2πn)
2πx−arccos(33​​)x+2πnx
Factor out common term x=x(2π−arccos(33​​)+2πn)
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=x(2π+2πn−arccos(3​1​))
x(2π−arccos(3​1​)+2πn)=π
Divide both sides by 2π−arccos(3​1​)+2πn;n=2π−2π+arccos(3​1​)​
x(2π−arccos(3​1​)+2πn)=π
Divide both sides by 2π−arccos(3​1​)+2πn;n=2π−2π+arccos(3​1​)​2π−arccos(3​1​)+2πnx(2π−arccos(3​1​)+2πn)​=2π−arccos(3​1​)+2πnπ​;n=2π−2π+arccos(3​1​)​
Simplify
2π−arccos(3​1​)+2πnx(2π−arccos(3​1​)+2πn)​=2π−arccos(3​1​)+2πnπ​
Simplify 2π−arccos(3​1​)+2πnx(2π−arccos(3​1​)+2πn)​:x
2π−arccos(3​1​)+2πnx(2π−arccos(3​1​)+2πn)​
x(2π−arccos(3​1​)+2πn)=x(2π−arccos(33​​)+2πn)
x(2π−arccos(3​1​)+2πn)
=x(2π+2πn−arccos(33​​))
=2π−arccos(3​1​)+2πnx(2π+2πn−arccos(33​​))​
2π−arccos(3​1​)+2πn=2π−arccos(33​​)+2πn
2π−arccos(3​1​)+2πn
=2π−arccos(33​​)+2πn
=2π−arccos(33​​)+2πnx(2π+2πn−arccos(33​​))​
Cancel the common factor: 2π−arccos(33​​)+2πn=x
Simplify 2π−arccos(3​1​)+2πnπ​:2π−arccos(33​​)+2πnπ​
2π−arccos(3​1​)+2πnπ​
2π−arccos(3​1​)+2πn=2π−arccos(33​​)+2πn
2π−arccos(3​1​)+2πn
=2π−arccos(33​​)+2πn
=2π−arccos(33​​)+2πnπ​
x=2π−arccos(33​​)+2πnπ​;n=2π−2π+arccos(3​1​)​
x=2π−arccos(33​​)+2πnπ​;n=2π−2π+arccos(3​1​)​
x=2π−arccos(33​​)+2πnπ​;n=2π−2π+arccos(3​1​)​
Simplify 2π−arccos(33​​)+2πnπ​:2π−arccos(3​1​)+2πnπ​
2π−arccos(33​​)+2πnπ​
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=2π−arccos(3​1​)+2πnπ​
x=2π−arccos(3​1​)+2πnπ​;n=2π−2π+arccos(3​1​)​
x=arccos(3​1​)+2πnπ​,x=2π−arccos(3​1​)+2πnπ​
Show solutions in decimal formx=0.95531…+2πnπ​,x=2π−0.95531…+2πnπ​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor y,arctan(y/x)=ln(x)sin(x)=5058.2^2=25.8^2+33.4^2-2(25.8(33.4))cos(a)4cos(θ)-1=2sin(θ)tan(θ)3tan(θ)=tan(2θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(pi/x)=(sqrt(3))/3 ?

    The general solution for cos(pi/x)=(sqrt(3))/3 is x= pi/(0.95531…+2pin),x= pi/(2pi-0.95531…+2pin)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024