Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)=sin(x-pi/3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)=sin(x−3π​)

Solution

x=1.30899…+πn
+1
Degrees
x=75∘+180∘n
Solution steps
cos(x)=sin(x−3π​)
Rewrite using trig identities
cos(x)=sin(x−3π​)
Rewrite using trig identities
sin(x−3π​)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(x)cos(3π​)−cos(x)sin(3π​)
Simplify sin(x)cos(3π​)−cos(x)sin(3π​):21​sin(x)−23​​cos(x)
sin(x)cos(3π​)−cos(x)sin(3π​)
Simplify cos(3π​):21​
cos(3π​)
Use the following trivial identity:cos(3π​)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
=21​sin(x)−sin(3π​)cos(x)
Simplify sin(3π​):23​​
sin(3π​)
Use the following trivial identity:sin(3π​)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=21​sin(x)−23​​cos(x)
=21​sin(x)−23​​cos(x)
cos(x)=21​sin(x)−23​​cos(x)
cos(x)=21​sin(x)−23​​cos(x)
Subtract 21​sin(x)−23​​cos(x) from both sides−21​sin(x)+23​+2​cos(x)=0
Simplify −21​sin(x)+23​+2​cos(x):2−sin(x)+(3​+2)cos(x)​
−21​sin(x)+23​+2​cos(x)
21​sin(x)=2sin(x)​
21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=2sin(x)​
23​+2​cos(x)=2(3​+2)cos(x)​
23​+2​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=2(3​+2)cos(x)​
=−2sin(x)​+2(2+3​)cos(x)​
Apply rule ca​±cb​=ca±b​=2−sin(x)+(2+3​)cos(x)​
2−sin(x)+(3​+2)cos(x)​=0
g(x)f(x)​=0⇒f(x)=0−sin(x)+(3​+2)cos(x)=0
Rewrite using trig identities
−sin(x)+(3​+2)cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)−sin(x)+(3​+2)cos(x)​=cos(x)0​
Simplify−cos(x)sin(x)​+3​+2=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−tan(x)+3​+2=0
−tan(x)+3​+2=0
Move 3​to the right side
−tan(x)+3​+2=0
Subtract 3​ from both sides−tan(x)+3​+2−3​=0−3​
Simplify−tan(x)+2=−3​
−tan(x)+2=−3​
Move 2to the right side
−tan(x)+2=−3​
Subtract 2 from both sides−tan(x)+2−2=−3​−2
Simplify−tan(x)=−3​−2
−tan(x)=−3​−2
Divide both sides by −1
−tan(x)=−3​−2
Divide both sides by −1−1−tan(x)​=−−13​​−−12​
Simplify
−1−tan(x)​=−−13​​−−12​
Simplify −1−tan(x)​:tan(x)
−1−tan(x)​
Apply the fraction rule: −b−a​=ba​=1tan(x)​
Apply rule 1a​=a=tan(x)
Simplify −−13​​−−12​:2+3​
−−13​​−−12​
Apply rule ca​±cb​=ca±b​=−1−3​−2​
Apply the fraction rule: −b−a​=ba​−3​−2=−(2+3​)=12+3​​
Apply rule 1a​=a=2+3​
tan(x)=2+3​
tan(x)=2+3​
tan(x)=2+3​
Apply trig inverse properties
tan(x)=2+3​
General solutions for tan(x)=2+3​tan(x)=a⇒x=arctan(a)+πnx=arctan(2+3​)+πn
x=arctan(2+3​)+πn
Show solutions in decimal formx=1.30899…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x+pi/4)+sin(x+pi/4)=-14sin^2(x)+9=12tan(-60s)=-tan(60)3-5cos(x)=0cos(A)= 2/3

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)=sin(x-pi/3) ?

    The general solution for cos(x)=sin(x-pi/3) is x=1.30899…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024