Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos(x)=sin^2(x)+1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos(x)=sin2(x)+1

Solution

x=1.10460…+2πn,x=2π−1.10460…+2πn
+1
Degrees
x=63.28904…∘+360∘n,x=296.71095…∘+360∘n
Solution steps
4cos(x)=sin2(x)+1
Subtract sin2(x)+1 from both sides4cos(x)−sin2(x)−1=0
Rewrite using trig identities
−1−sin2(x)+4cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1−(1−cos2(x))+4cos(x)
Simplify −1−(1−cos2(x))+4cos(x):cos2(x)+4cos(x)−2
−1−(1−cos2(x))+4cos(x)
−(1−cos2(x)):−1+cos2(x)
−(1−cos2(x))
Distribute parentheses=−(1)−(−cos2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+cos2(x)
=−1−1+cos2(x)+4cos(x)
Subtract the numbers: −1−1=−2=cos2(x)+4cos(x)−2
=cos2(x)+4cos(x)−2
−2+cos2(x)+4cos(x)=0
Solve by substitution
−2+cos2(x)+4cos(x)=0
Let: cos(x)=u−2+u2+4u=0
−2+u2+4u=0:u=−2+6​,u=−2−6​
−2+u2+4u=0
Write in the standard form ax2+bx+c=0u2+4u−2=0
Solve with the quadratic formula
u2+4u−2=0
Quadratic Equation Formula:
For a=1,b=4,c=−2u1,2​=2⋅1−4±42−4⋅1⋅(−2)​​
u1,2​=2⋅1−4±42−4⋅1⋅(−2)​​
42−4⋅1⋅(−2)​=26​
42−4⋅1⋅(−2)​
Apply rule −(−a)=a=42+4⋅1⋅2​
Multiply the numbers: 4⋅1⋅2=8=42+8​
42=16=16+8​
Add the numbers: 16+8=24=24​
Prime factorization of 24:23⋅3
24
24divides by 224=12⋅2=2⋅12
12divides by 212=6⋅2=2⋅2⋅6
6divides by 26=3⋅2=2⋅2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3
=23⋅3
=23⋅3​
Apply exponent rule: ab+c=ab⋅ac=22⋅2⋅3​
Apply radical rule: =22​2⋅3​
Apply radical rule: 22​=2=22⋅3​
Refine=26​
u1,2​=2⋅1−4±26​​
Separate the solutionsu1​=2⋅1−4+26​​,u2​=2⋅1−4−26​​
u=2⋅1−4+26​​:−2+6​
2⋅1−4+26​​
Multiply the numbers: 2⋅1=2=2−4+26​​
Factor −4+26​:2(−2+6​)
−4+26​
Rewrite as=−2⋅2+26​
Factor out common term 2=2(−2+6​)
=22(−2+6​)​
Divide the numbers: 22​=1=−2+6​
u=2⋅1−4−26​​:−2−6​
2⋅1−4−26​​
Multiply the numbers: 2⋅1=2=2−4−26​​
Factor −4−26​:−2(2+6​)
−4−26​
Rewrite as=−2⋅2−26​
Factor out common term 2=−2(2+6​)
=−22(2+6​)​
Divide the numbers: 22​=1=−(2+6​)
Negate −(2+6​)=−2−6​=−2−6​
The solutions to the quadratic equation are:u=−2+6​,u=−2−6​
Substitute back u=cos(x)cos(x)=−2+6​,cos(x)=−2−6​
cos(x)=−2+6​,cos(x)=−2−6​
cos(x)=−2+6​:x=arccos(−2+6​)+2πn,x=2π−arccos(−2+6​)+2πn
cos(x)=−2+6​
Apply trig inverse properties
cos(x)=−2+6​
General solutions for cos(x)=−2+6​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(−2+6​)+2πn,x=2π−arccos(−2+6​)+2πn
x=arccos(−2+6​)+2πn,x=2π−arccos(−2+6​)+2πn
cos(x)=−2−6​:No Solution
cos(x)=−2−6​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(−2+6​)+2πn,x=2π−arccos(−2+6​)+2πn
Show solutions in decimal formx=1.10460…+2πn,x=2π−1.10460…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(A)= 24/7(sin(74))/8 =(sin(a))/4sin(x)=sin(x-pi/2)tan(x)= pi/3cos(x)=-0.58

Frequently Asked Questions (FAQ)

  • What is the general solution for 4cos(x)=sin^2(x)+1 ?

    The general solution for 4cos(x)=sin^2(x)+1 is x=1.10460…+2pin,x=2pi-1.10460…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024