Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

250sin(75)=393.19sin(45-θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

250sin(75∘)=393.19sin(45∘−θ)

Solution

θ=−360∘n+45∘−0.66132…,θ=−180∘−360∘n+45∘+0.66132…
+1
Radians
θ=4π​−0.66132…−2πn,θ=−π+4π​+0.66132…−2πn
Solution steps
250sin(75∘)=393.19sin(45∘−θ)
sin(75∘)=46​+2​​
sin(75∘)
Rewrite using trig identities:sin(45∘)cos(30∘)+cos(45∘)sin(30∘)
sin(75∘)
Write sin(75∘)as sin(45∘+30∘)=sin(45∘+30∘)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(45∘)cos(30∘)+cos(45∘)sin(30∘)
=sin(45∘)cos(30∘)+cos(45∘)sin(30∘)
Use the following trivial identity:sin(45∘)=22​​
sin(45∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
Use the following trivial identity:cos(30∘)=23​​
cos(30∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Use the following trivial identity:cos(45∘)=22​​
cos(45∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(30∘)=21​
sin(30∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​+22​​⋅21​
Simplify 22​​⋅23​​+22​​⋅21​:46​+2​​
22​​⋅23​​+22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multiply the numbers: 2⋅2=4=42​3​​
Simplify 2​3​:6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multiply: 2​⋅1=2​=2⋅22​​
Multiply the numbers: 2⋅2=4=42​​
=46​​+42​​
Apply rule ca​±cb​=ca±b​=46​+2​​
=46​+2​​
250⋅46​+2​​=393.19sin(45∘−θ)
Switch sides393.19sin(45∘−θ)=250⋅46​+2​​
Multiply both sides by 100
393.19sin(45∘−θ)=250⋅46​+2​​
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 100393.19sin(45∘−θ)⋅100=250⋅46​+2​​⋅100
Refine39319sin(45∘−θ)=6250(6​+2​)
39319sin(45∘−θ)=6250(6​+2​)
Divide both sides by 39319
39319sin(45∘−θ)=6250(6​+2​)
Divide both sides by 393193931939319sin(45∘−θ)​=393196250(6​+2​)​
Simplifysin(45∘−θ)=393196250(6​+2​)​
sin(45∘−θ)=393196250(6​+2​)​
Apply trig inverse properties
sin(45∘−θ)=393196250(6​+2​)​
General solutions for sin(45∘−θ)=393196250(6​+2​)​sin(x)=a⇒x=arcsin(a)+360∘n,x=180∘−arcsin(a)+360∘n45∘−θ=arcsin(393196250(6​+2​)​)+360∘n,45∘−θ=180∘−arcsin(393196250(6​+2​)​)+360∘n
45∘−θ=arcsin(393196250(6​+2​)​)+360∘n,45∘−θ=180∘−arcsin(393196250(6​+2​)​)+360∘n
Solve 45∘−θ=arcsin(393196250(6​+2​)​)+360∘n:θ=−360∘n+45∘−arcsin(393196250(6​+2​)​)
45∘−θ=arcsin(393196250(6​+2​)​)+360∘n
Move 45∘to the right side
45∘−θ=arcsin(393196250(6​+2​)​)+360∘n
Subtract 45∘ from both sides45∘−θ−45∘=arcsin(393196250(6​+2​)​)+360∘n−45∘
Simplify−θ=arcsin(393196250(6​+2​)​)+360∘n−45∘
−θ=arcsin(393196250(6​+2​)​)+360∘n−45∘
Divide both sides by −1
−θ=arcsin(393196250(6​+2​)​)+360∘n−45∘
Divide both sides by −1−1−θ​=−1arcsin(393196250(6​+2​)​)​+−1360∘n​−−145∘​
Simplify
−1−θ​=−1arcsin(393196250(6​+2​)​)​+−1360∘n​−−145∘​
Simplify −1−θ​:θ
−1−θ​
Apply the fraction rule: −b−a​=ba​=1θ​
Apply rule 1a​=a=θ
Simplify −1arcsin(393196250(6​+2​)​)​+−1360∘n​−−145∘​:−360∘n+45∘−arcsin(393196250(6​+2​)​)
−1arcsin(393196250(6​+2​)​)​+−1360∘n​−−145∘​
Group like terms=−1360∘n​−−145∘​+−1arcsin(393196250(6​+2​)​)​
−1360∘n​=−360∘n
−1360∘n​
Apply the fraction rule: −ba​=−ba​=−1360∘n​
Apply rule 1a​=a=−360∘n
=−360∘n−−145∘​+−1arcsin(393196250(6​+2​)​)​
−145∘​=−45∘
−145∘​
Apply the fraction rule: −ba​=−ba​=−145∘​
Apply the fraction rule: 1a​=a145∘​=45∘=−45∘
−1arcsin(393196250(6​+2​)​)​=−arcsin(393196250(6​+2​)​)
−1arcsin(393196250(6​+2​)​)​
Apply the fraction rule: −ba​=−ba​=−1arcsin(393196250(6​+2​)​)​
Apply the fraction rule: 1a​=a1arcsin(393196250(6​+2​)​)​=arcsin(393196250(6​+2​)​)=−arcsin(393196250(6​+2​)​)
=−360∘n−(−45∘)−arcsin(393196250(6​+2​)​)
Apply rule −(−a)=a=−360∘n+45∘−arcsin(393196250(6​+2​)​)
θ=−360∘n+45∘−arcsin(393196250(6​+2​)​)
θ=−360∘n+45∘−arcsin(393196250(6​+2​)​)
θ=−360∘n+45∘−arcsin(393196250(6​+2​)​)
Solve 45∘−θ=180∘−arcsin(393196250(6​+2​)​)+360∘n:θ=−180∘−360∘n+45∘+arcsin(393196250(6​+2​)​)
45∘−θ=180∘−arcsin(393196250(6​+2​)​)+360∘n
Move 45∘to the right side
45∘−θ=180∘−arcsin(393196250(6​+2​)​)+360∘n
Subtract 45∘ from both sides45∘−θ−45∘=180∘−arcsin(393196250(6​+2​)​)+360∘n−45∘
Simplify−θ=180∘−arcsin(393196250(6​+2​)​)+360∘n−45∘
−θ=180∘−arcsin(393196250(6​+2​)​)+360∘n−45∘
Divide both sides by −1
−θ=180∘−arcsin(393196250(6​+2​)​)+360∘n−45∘
Divide both sides by −1−1−θ​=−1180∘​−−1arcsin(393196250(6​+2​)​)​+−1360∘n​−−145∘​
Simplify
−1−θ​=−1180∘​−−1arcsin(393196250(6​+2​)​)​+−1360∘n​−−145∘​
Simplify −1−θ​:θ
−1−θ​
Apply the fraction rule: −b−a​=ba​=1θ​
Apply rule 1a​=a=θ
Simplify −1180∘​−−1arcsin(393196250(6​+2​)​)​+−1360∘n​−−145∘​:−180∘−360∘n+45∘+arcsin(393196250(6​+2​)​)
−1180∘​−−1arcsin(393196250(6​+2​)​)​+−1360∘n​−−145∘​
Group like terms=−1180∘​+−1360∘n​−−145∘​−−1arcsin(393196250(6​+2​)​)​
−1180∘​=−180∘
−1180∘​
Apply the fraction rule: −ba​=−ba​=−180∘
Apply rule 1a​=a=−180∘
=−180∘+−1360∘n​−−145∘​−−1arcsin(393196250(6​+2​)​)​
−1360∘n​=−360∘n
−1360∘n​
Apply the fraction rule: −ba​=−ba​=−1360∘n​
Apply rule 1a​=a=−360∘n
=−180∘−360∘n−−145∘​−−1arcsin(393196250(6​+2​)​)​
−145∘​=−45∘
−145∘​
Apply the fraction rule: −ba​=−ba​=−145∘​
Apply the fraction rule: 1a​=a145∘​=45∘=−45∘
−1arcsin(393196250(6​+2​)​)​=−arcsin(393196250(6​+2​)​)
−1arcsin(393196250(6​+2​)​)​
Apply the fraction rule: −ba​=−ba​=−1arcsin(393196250(6​+2​)​)​
Apply the fraction rule: 1a​=a1arcsin(393196250(6​+2​)​)​=arcsin(393196250(6​+2​)​)=−arcsin(393196250(6​+2​)​)
=−180∘−360∘n−(−45∘)−(−arcsin(393196250(6​+2​)​))
Apply rule −(−a)=a=−180∘−360∘n+45∘+arcsin(393196250(6​+2​)​)
θ=−180∘−360∘n+45∘+arcsin(393196250(6​+2​)​)
θ=−180∘−360∘n+45∘+arcsin(393196250(6​+2​)​)
θ=−180∘−360∘n+45∘+arcsin(393196250(6​+2​)​)
θ=−360∘n+45∘−arcsin(393196250(6​+2​)​),θ=−180∘−360∘n+45∘+arcsin(393196250(6​+2​)​)
Show solutions in decimal formθ=−360∘n+45∘−0.66132…,θ=−180∘−360∘n+45∘+0.66132…

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)= 6/(6.71)sin(2θ)=0.5cos(pi/2+x)=04sin(x)-13=2cos^2(x)-9cos(θ)=-8/11

Frequently Asked Questions (FAQ)

  • What is the general solution for 250sin(75)=393.19sin(45-θ) ?

    The general solution for 250sin(75)=393.19sin(45-θ) is θ=-360n+45-0.66132…,θ=-180-360n+45+0.66132…
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024