Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(0.2x)+arctan(0.0625x)=54

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(0.2x)+arctan(0.0625x)=54∘

Solution

x=0.68819…65.45104…​−5.25​
Solution steps
arctan(0.2x)+arctan(0.0625x)=54∘
Rewrite using trig identities
arctan(0.2x)+arctan(0.0625x)
Use the Sum to Product identity: arctan(s)+arctan(t)=arctan(1−sts+t​)=arctan(1−0.2x⋅0.0625x0.2x+0.0625x​)
arctan(1−0.2x⋅0.0625x0.2x+0.0625x​)=54∘
Apply trig inverse properties
arctan(1−0.2x⋅0.0625x0.2x+0.0625x​)=54∘
arctan(x)=a⇒x=tan(a)1−0.2x⋅0.0625x0.2x+0.0625x​=tan(54∘)
tan(54∘)=20(310​+52​)5−5​​​
tan(54∘)
Rewrite using trig identities:cos(54∘)sin(54∘)​
tan(54∘)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(54∘)sin(54∘)​
=cos(54∘)sin(54∘)​
Rewrite using trig identities:sin(54∘)=45​+1​
sin(54∘)
Rewrite using trig identities:cos(36∘)
sin(54∘)
Use the following identity: sin(x)=cos(90∘−x)=cos(90∘−54∘)
Simplify:90∘−54∘=36∘
90∘−54∘
Least Common Multiplier of 2,10:10
2,10
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 10:2⋅5
10
10divides by 210=5⋅2=2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 10=2⋅5
Multiply the numbers: 2⋅5=10=10
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 10
For 90∘:multiply the denominator and numerator by 590∘=2⋅5180∘5​=90∘
=90∘−54∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=10180∘5−540∘​
Add similar elements: 900∘−540∘=360∘=36∘
Cancel the common factor: 2=36∘
=cos(36∘)
=cos(36∘)
Rewrite using trig identities:45​+1​
cos(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
=45​+1​
=45​+1​
Rewrite using trig identities:cos(54∘)=42​5−5​​​
cos(54∘)
Rewrite using trig identities:sin(36∘)
cos(54∘)
Use the following identity: cos(x)=sin(90∘−x)=sin(90∘−54∘)
Simplify:90∘−54∘=36∘
90∘−54∘
Least Common Multiplier of 2,10:10
2,10
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 10:2⋅5
10
10divides by 210=5⋅2=2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 10=2⋅5
Multiply the numbers: 2⋅5=10=10
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 10
For 90∘:multiply the denominator and numerator by 590∘=2⋅5180∘5​=90∘
=90∘−54∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=10180∘5−540∘​
Add similar elements: 900∘−540∘=360∘=36∘
Cancel the common factor: 2=36∘
=sin(36∘)
=sin(36∘)
Rewrite using trig identities:42​5−5​​​
sin(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
Square both sides(cos(36∘))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
Substitute cos(36∘)=45​+1​sin2(36∘)=1−(45​+1​)2
Refinesin2(36∘)=85−5​​
Take the square root of both sidessin(36∘)=±85−5​​​
sin(36∘)cannot be negativesin(36∘)=85−5​​​
Refinesin(36∘)=225−5​​​​
=225−5​​​​
225−5​​​​=42​5−5​​​
225−5​​​​
25−5​​​=2​5−5​​​
25−5​​​
Apply radical rule: assuming a≥0,b≥0=2​5−5​​​
=22​5−5​​​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅25−5​​​
Rationalize 22​5−5​​​:42​5−5​​​
22​5−5​​​
Multiply by the conjugate 2​2​​=2​⋅22​5−5​​2​​
2​⋅22​=4
2​⋅22​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​45​+1​​
Simplify 42​5−5​​​45​+1​​:20(310​+52​)5−5​​​
42​5−5​​​45​+1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=42​5−5​​(5​+1)⋅4​
Cancel the common factor: 4=2​5−5​​5​+1​
Rationalize 2​5−5​​5​+1​:20(310​+52​)5−5​​​
2​5−5​​5​+1​
Multiply by the conjugate 2​2​​=2​5−5​​2​(5​+1)2​​
2​5−5​​2​=25−5​​
2​5−5​​2​
Apply radical rule: a​a​=a2​2​=2=25−5​​
=25−5​​2​(5​+1)​
Multiply by the conjugate 5−5​​5−5​​​=25−5​​5−5​​2​(5​+1)5−5​​​
25−5​​5−5​​=10−25​
25−5​​5−5​​
Apply radical rule: a​a​=a5−5​​5−5​​=5−5​=2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=10−25​2​(5​+1)5−5​​​
Factor out common term −2:−2(5​−5)
−25​+10
Rewrite 10 as 2⋅5=−25​+2⋅5
Factor out common term −2=−2(5​−5)
=−2(5​−5)2​(5​+1)5−5​​​
Cancel −2(5​−5)2​(5​+1)5−5​​​:2(5−5​)2​(5​+1)5−5​​​
−2(5​−5)2​(5​+1)5−5​​​
5​−5=−(5−5​)=−−2(5−5​)2​(1+5​)5−5​​​
Refine=2(5−5​)2​(5​+1)5−5​​​
=2(5−5​)2​(5​+1)5−5​​​
Multiply by the conjugate 5+5​5+5​​=2(5−5​)(5+5​)2​(5​+1)5−5​​(5+5​)​
2​(5​+1)5−5​​(5+5​)=610​5−5​​+102​5−5​​
2​(5​+1)5−5​​(5+5​)
=2​(5​+1)(5+5​)5−5​​
Expand (5​+1)(5+5​):65​+10
(5​+1)(5+5​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=5​,b=1,c=5,d=5​=5​⋅5+5​5​+1⋅5+1⋅5​
=55​+5​5​+1⋅5+1⋅5​
Simplify 55​+5​5​+1⋅5+1⋅5​:65​+10
55​+5​5​+1⋅5+1⋅5​
Add similar elements: 55​+1⋅5​=65​=65​+5​5​+1⋅5
Apply radical rule: a​a​=a5​5​=5=65​+5+1⋅5
Multiply the numbers: 1⋅5=5=65​+5+5
Add the numbers: 5+5=10=65​+10
=65​+10
=2​5−5​​(65​+10)
Expand 2​5−5​​(65​+10):610​5−5​​+102​5−5​​
2​5−5​​(65​+10)
Apply the distributive law: a(b+c)=ab+aca=2​5−5​​,b=65​,c=10=2​5−5​​⋅65​+2​5−5​​⋅10
=62​5​5−5​​+102​5−5​​
62​5​5−5​​=610​5−5​​
62​5​5−5​​
Apply radical rule: a​b​=a⋅b​2​5​5−5​​=2⋅5(5−5​)​=62⋅5(5−5​)​
Multiply the numbers: 2⋅5=10=610(5−5​)​
Apply radical rule: assuming a≥0,b≥010(5−5​)​=10​5−5​​=610​5−5​​
=610​5−5​​+102​5−5​​
=610​5−5​​+102​5−5​​
2(5−5​)(5+5​)=40
2(5−5​)(5+5​)
Expand (5−5​)(5+5​):20
(5−5​)(5+5​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=5,b=5​=52−(5​)2
Simplify 52−(5​)2:20
52−(5​)2
52=25
52
52=25=25
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=25−5
Subtract the numbers: 25−5=20=20
=20
=2⋅20
Expand 2⋅20:40
2⋅20
Distribute parentheses=2⋅20
Multiply the numbers: 2⋅20=40=40
=40
=40610​5−5​​+102​5−5​​​
Factor 610​5−5​​+102​5−5​​:25−5​​(310​+52​)
610​5−5​​+102​5−5​​
Rewrite as=3⋅25−5​​10​+5⋅25−5​​2​
Factor out common term 25−5​​=25−5​​(310​+52​)
=4025−5​​(310​+52​)​
Cancel the common factor: 2=20(310​+52​)5−5​​​
=20(310​+52​)5−5​​​
=20(310​+52​)5−5​​​
1−0.2x⋅0.0625x0.2x+0.0625x​=20(310​+52​)5−5​​​
1−0.2x⋅0.0625x0.2x+0.0625x​=20(310​+52​)5−5​​​
Solve 1−0.2x⋅0.0625x0.2x+0.0625x​=20(310​+52​)5−5​​​:x=−0.68819…5.25+65.45104…​​,x=0.68819…65.45104…​−5.25​
1−0.2x⋅0.0625x0.2x+0.0625x​=20(310​+52​)5−5​​​
Cross multiply
1−0.2x⋅0.0625x0.2x+0.0625x​=20(310​+52​)5−5​​​
Simplify 1−0.2x⋅0.0625x0.2x+0.0625x​:1−0.0125x20.2625x​
1−0.2x⋅0.0625x0.2x+0.0625x​
Add similar elements: 0.2x+0.0625x=0.2625x=1−0.2x⋅0.0625x0.2625x​
Simplify 0.2x⋅0.0625x:0.0125x2
0.2x⋅0.0625x
Multiply the numbers: 0.2⋅0.0625=0.0125=0.0125xx
Apply exponent rule: aa=a2xx=x2=0.0125x2
=1−0.0125x20.2625x​
1−0.0125x20.2625x​=20(310​+52​)5−5​​​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c0.2625x⋅20=(1−0.0125x2)(310​+52​)5−5​​
Simplify 0.2625x⋅20:5.25x
0.2625x⋅20
Multiply the numbers: 0.2625⋅20=5.25=5.25x
5.25x=(1−0.0125x2)(310​+52​)5−5​​
5.25x=(1−0.0125x2)(310​+52​)5−5​​
Solve 5.25x=(1−0.0125x2)(310​+52​)5−5​​:x=−0.68819…5.25+65.45104…​​,x=0.68819…65.45104…​−5.25​
5.25x=(1−0.0125x2)(310​+52​)5−5​​
Expand (1−0.0125x2)(310​+52​)5−5​​:350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2
(1−0.0125x2)(310​+52​)5−5​​
=(310​+52​)5−5​​(1−0.0125x2)
Expand (1−0.0125x2)(310​+52​):310​+52​−10​⋅0.0375x2−2​⋅0.0625x2
(1−0.0125x2)(310​+52​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=1,b=−0.0125x2,c=310​,d=52​=1⋅310​+1⋅52​+(−0.0125x2)⋅310​+(−0.0125x2)⋅52​
Apply minus-plus rules+(−a)=−a=1⋅310​+1⋅52​−310​⋅0.0125x2−52​⋅0.0125x2
Simplify 1⋅310​+1⋅52​−310​⋅0.0125x2−52​⋅0.0125x2:310​+52​−10​⋅0.0375x2−2​⋅0.0625x2
1⋅310​+1⋅52​−310​⋅0.0125x2−52​⋅0.0125x2
1⋅310​=310​
1⋅310​
Multiply the numbers: 1⋅3=3=310​
1⋅52​=52​
1⋅52​
Multiply the numbers: 1⋅5=5=52​
310​⋅0.0125x2=10​⋅0.0375x2
310​⋅0.0125x2
Multiply the numbers: 3⋅0.0125=0.0375=10​⋅0.0375x2
52​⋅0.0125x2=2​⋅0.0625x2
52​⋅0.0125x2
Multiply the numbers: 5⋅0.0125=0.0625=2​⋅0.0625x2
=310​+52​−10​⋅0.0375x2−2​⋅0.0625x2
=310​+52​−10​⋅0.0375x2−2​⋅0.0625x2
=5−5​​(310​+52​−10​⋅0.0375x2−2​⋅0.0625x2)
Expand 5−5​​(310​+52​−10​⋅0.0375x2−2​⋅0.0625x2):350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2
5−5​​(310​+52​−10​⋅0.0375x2−2​⋅0.0625x2)
Distribute parentheses=5−5​​⋅310​+5−5​​⋅52​+5−5​​(−10​⋅0.0375x2)+5−5​​(−2​⋅0.0625x2)
Apply minus-plus rules+(−a)=−a=310​5−5​​+52​5−5​​−10​⋅0.03755−5​​x2−2​⋅0.06255−5​​x2
Simplify 310​5−5​​+52​5−5​​−10​⋅0.03755−5​​x2−2​⋅0.06255−5​​x2:350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2
310​5−5​​+52​5−5​​−10​⋅0.03755−5​​x2−2​⋅0.06255−5​​x2
310​5−5​​=350−105​​
310​5−5​​
Apply radical rule: a​b​=a⋅b​10​5−5​​=10(5−5​)​=310(5−5​)​
Expand 10(5−5​):50−105​
10(5−5​)
Apply the distributive law: a(b−c)=ab−aca=10,b=5,c=5​=10⋅5−105​
Multiply the numbers: 10⋅5=50=50−105​
=350−105​​
52​5−5​​=510−25​​
52​5−5​​
Apply radical rule: a​b​=a⋅b​2​5−5​​=2(5−5​)​=52(5−5​)​
Expand 2(5−5​):10−25​
2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=510−25​​
10​⋅0.03755−5​​x2=0.037550−105​​x2
10​⋅0.03755−5​​x2
Apply radical rule: a​b​=a⋅b​10​5−5​​=10(5−5​)​=0.037510(5−5​)​x2
Expand 10(5−5​):50−105​
10(5−5​)
Apply the distributive law: a(b−c)=ab−aca=10,b=5,c=5​=10⋅5−105​
Multiply the numbers: 10⋅5=50=50−105​
=0.037550−105​​x2
2​⋅0.06255−5​​x2=0.062510−25​​x2
2​⋅0.06255−5​​x2
Apply radical rule: a​b​=a⋅b​2​5−5​​=2(5−5​)​=0.06252(5−5​)​x2
Expand 2(5−5​):10−25​
2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=0.062510−25​​x2
=350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2
=350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2
=350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2
5.25x=350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2
Switch sides350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2=5.25x
Move 5.25xto the left side
350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2=5.25x
Subtract 5.25x from both sides350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2−5.25x=5.25x−5.25x
Simplify350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2−5.25x=0
350−105​​+510−25​​−0.037550−105​​x2−0.062510−25​​x2−5.25x=0
Write in the standard form ax2+bx+c=0−0.34409…x2−5.25x+27.52763…=0
Solve with the quadratic formula
−0.34409…x2−5.25x+27.52763…=0
Quadratic Equation Formula:
For a=−0.34409…,b=−5.25,c=27.52763…x1,2​=2(−0.34409…)−(−5.25)±(−5.25)2−4(−0.34409…)⋅27.52763…​​
x1,2​=2(−0.34409…)−(−5.25)±(−5.25)2−4(−0.34409…)⋅27.52763…​​
(−5.25)2−4(−0.34409…)⋅27.52763…​=65.45104…​
(−5.25)2−4(−0.34409…)⋅27.52763…​
Apply rule −(−a)=a=(−5.25)2+4⋅0.34409…⋅27.52763…​
Apply exponent rule: (−a)n=an,if n is even(−5.25)2=5.252=5.252+4⋅0.34409…⋅27.52763…​
Multiply the numbers: 4⋅0.34409…⋅27.52763…=37.88854…=5.252+37.88854…​
5.252=27.5625=27.5625+37.88854…​
Add the numbers: 27.5625+37.88854…=65.45104…=65.45104…​
x1,2​=2(−0.34409…)−(−5.25)±65.45104…​​
Separate the solutionsx1​=2(−0.34409…)−(−5.25)+65.45104…​​,x2​=2(−0.34409…)−(−5.25)−65.45104…​​
x=2(−0.34409…)−(−5.25)+65.45104…​​:−0.68819…5.25+65.45104…​​
2(−0.34409…)−(−5.25)+65.45104…​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅0.34409…5.25+65.45104…​​
Multiply the numbers: 2⋅0.34409…=0.68819…=−0.68819…5.25+65.45104…​​
Apply the fraction rule: −ba​=−ba​=−0.68819…5.25+65.45104…​​
x=2(−0.34409…)−(−5.25)−65.45104…​​:0.68819…65.45104…​−5.25​
2(−0.34409…)−(−5.25)−65.45104…​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅0.34409…5.25−65.45104…​​
Multiply the numbers: 2⋅0.34409…=0.68819…=−0.68819…5.25−65.45104…​​
Apply the fraction rule: −b−a​=ba​5.25−65.45104…​=−(65.45104…​−5.25)=0.68819…65.45104…​−5.25​
The solutions to the quadratic equation are:x=−0.68819…5.25+65.45104…​​,x=0.68819…65.45104…​−5.25​
x=−0.68819…5.25+65.45104…​​,x=0.68819…65.45104…​−5.25​
Verify Solutions
Find undefined (singularity) points:x=45​,x=−45​
Take the denominator(s) of 1−0.2x⋅0.0625x0.2x+0.0625x​ and compare to zero
Solve 1−0.2x⋅0.0625x=0:x=45​,x=−45​
1−0.2x⋅0.0625x=0
Move 1to the right side
1−0.2x⋅0.0625x=0
Subtract 1 from both sides1−0.2x⋅0.0625x−1=0−1
Simplify−0.2x⋅0.0625x=−1
−0.2x⋅0.0625x=−1
Simplify−0.0125x2=−1
Divide both sides by −0.0125−0.0125−0.0125x2​=−0.0125−1​
x2=0.01251​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=0.01251​​,x=−0.01251​​
0.01251​​=45​
0.01251​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=0.0125​1​​
Apply radical rule: 1​=11​=1=0.0125​1​
0.0125​=45​1​
0.0125​
0.0125=801​
0.0125
Multiply and divide by 10 for every number after the decimal point.
There are 4 digits to the right of the decimal point, therefore multiply and divide by 10000
=1000010000⋅0.0125​
Multiply the numbers: 10000⋅0.0125=125=10000125​
Cancel the numbers: 10000125​=801​=801​
=801​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=80​1​​
Apply radical rule: 1​=11​=1=80​1​
80​=45​
80​
Prime factorization of 80:24⋅5
80
80divides by 280=40⋅2=2⋅40
40divides by 240=20⋅2=2⋅2⋅20
20divides by 220=10⋅2=2⋅2⋅2⋅10
10divides by 210=5⋅2=2⋅2⋅2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅5
=24⋅5
=24⋅5​
Apply radical rule: ab​=a​b​,a≥0,b≥024⋅5​=24​5​=24​5​
24​=4
24​
Apply radical rule: 24​=224​=224​
Divide the numbers: 24​=2=22
22=4=4
=45​
=45​1​
=45​1​1​
Apply the fraction rule: cb​1​=bc​=145​​
Apply the fraction rule: 1a​=a=45​
−0.01251​​=−45​
−0.01251​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−0.0125​1​​
Apply radical rule: 1​=11​=1=−0.0125​1​
0.0125​=45​1​
0.0125​
0.0125=801​
0.0125
Multiply and divide by 10 for every number after the decimal point.
There are 4 digits to the right of the decimal point, therefore multiply and divide by 10000
=1000010000⋅0.0125​
Multiply the numbers: 10000⋅0.0125=125=10000125​
Cancel the numbers: 10000125​=801​=801​
=801​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=80​1​​
Apply radical rule: 1​=11​=1=80​1​
80​=45​
80​
Prime factorization of 80:24⋅5
80
80divides by 280=40⋅2=2⋅40
40divides by 240=20⋅2=2⋅2⋅20
20divides by 220=10⋅2=2⋅2⋅2⋅10
10divides by 210=5⋅2=2⋅2⋅2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅5
=24⋅5
=24⋅5​
Apply radical rule: ab​=a​b​,a≥0,b≥024⋅5​=24​5​=24​5​
24​=4
24​
Apply radical rule: 24​=224​=224​
Divide the numbers: 24​=2=22
22=4=4
=45​
=45​1​
=−45​1​1​
Apply the fraction rule: cb​1​=bc​45​1​1​=145​​=−145​​
Apply the fraction rule: 1a​=a=−45​
x=45​,x=−45​
The following points are undefinedx=45​,x=−45​
Combine undefined points with solutions:
x=−0.68819…5.25+65.45104…​​,x=0.68819…65.45104…​−5.25​
x=−0.68819…5.25+65.45104…​​,x=0.68819…65.45104…​−5.25​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(0.2x)+arctan(0.0625x)=54∘
Remove the ones that don't agree with the equation.
Check the solution −0.68819…5.25+65.45104…​​:False
−0.68819…5.25+65.45104…​​
Plug in n=1−0.68819…5.25+65.45104…​​
For arctan(0.2x)+arctan(0.0625x)=54∘plug inx=−0.68819…5.25+65.45104…​​arctan(0.2(−0.68819…5.25+65.45104…​​))+arctan(0.0625(−0.68819…5.25+65.45104…​​))=54∘
Refine−2.19911…=0.94247…
⇒False
Check the solution 0.68819…65.45104…​−5.25​:True
0.68819…65.45104…​−5.25​
Plug in n=10.68819…65.45104…​−5.25​
For arctan(0.2x)+arctan(0.0625x)=54∘plug inx=0.68819…65.45104…​−5.25​arctan(0.2⋅0.68819…65.45104…​−5.25​)+arctan(0.0625⋅0.68819…65.45104…​−5.25​)=54∘
Refine0.94247…=0.94247…
⇒True
x=0.68819…65.45104…​−5.25​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(θ)+cos(θ)=1tan(x)=(3/4)cos(x)=-0.6987sin(3x)=(sqrt(2))/2 ,0<= x<= 2pi3sin(θ)=sin(θ)-sqrt(2)

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(0.2x)+arctan(0.0625x)=54 ?

    The general solution for arctan(0.2x)+arctan(0.0625x)=54 is x=(sqrt(65.45104…)-5.25)/(0.68819…)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024