Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2x)+sin(2x)+cos(2x)=sec(2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2x)+sin(2x)+cos(2x)=sec(2x)

Solution

x=2π+2πn​,x=πn,x=44πn+π​
+1
Degrees
x=90∘+180∘n,x=0∘+180∘n,x=45∘+180∘n
Solution steps
tan(2x)+sin(2x)+cos(2x)=sec(2x)
Subtract sec(2x) from both sidestan(2x)+sin(2x)+cos(2x)−sec(2x)=0
Let: u=2xtan(u)+sin(u)+cos(u)−sec(u)=0
Express with sin, cos
cos(u)−sec(u)+sin(u)+tan(u)
Use the basic trigonometric identity: sec(x)=cos(x)1​=cos(u)−cos(u)1​+sin(u)+tan(u)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(u)−cos(u)1​+sin(u)+cos(u)sin(u)​
Simplify cos(u)−cos(u)1​+sin(u)+cos(u)sin(u)​:cos(u)cos2(u)−1+sin(u)+sin(u)cos(u)​
cos(u)−cos(u)1​+sin(u)+cos(u)sin(u)​
Combine the fractions −cos(u)1​+cos(u)sin(u)​:cos(u)−1+sin(u)​
Apply rule ca​±cb​=ca±b​=cos(u)−1+sin(u)​
=cos(u)+cos(u)sin(u)−1​+sin(u)
Convert element to fraction: cos(u)=cos(u)cos(u)cos(u)​,sin(u)=cos(u)sin(u)cos(u)​=cos(u)cos(u)cos(u)​+cos(u)−1+sin(u)​+cos(u)sin(u)cos(u)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(u)cos(u)cos(u)−1+sin(u)+sin(u)cos(u)​
cos(u)cos(u)−1+sin(u)+sin(u)cos(u)=cos2(u)−1+sin(u)+sin(u)cos(u)
cos(u)cos(u)−1+sin(u)+sin(u)cos(u)
cos(u)cos(u)=cos2(u)
cos(u)cos(u)
Apply exponent rule: ab⋅ac=ab+ccos(u)cos(u)=cos1+1(u)=cos1+1(u)
Add the numbers: 1+1=2=cos2(u)
=cos2(u)−1+sin(u)+sin(u)cos(u)
=cos(u)cos2(u)−1+sin(u)+sin(u)cos(u)​
=cos(u)cos2(u)−1+sin(u)+sin(u)cos(u)​
cos(u)−1+cos2(u)+sin(u)+cos(u)sin(u)​=0
g(x)f(x)​=0⇒f(x)=0−1+cos2(u)+sin(u)+cos(u)sin(u)=0
Rewrite using trig identities
−1+cos2(u)+sin(u)+cos(u)sin(u)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−cos2(x)=sin2(x)=sin(u)+cos(u)sin(u)−sin2(u)
sin2(u)=(1+cos(u))(1−cos(u))
sin2(u)
Use the Pythagorean identity: cos2(u)+sin2(u)=1sin2(u)=1−cos2(u)=1−cos2(u)
Factor 1−cos2(u):(1+cos(u))(1−cos(u))
1−cos2(u)
Apply Difference of Two Squares Formula: u2−y2=(u+y)(u−y)1−cos2(u)=(1+cos(u))(1−cos(u))=(1+cos(u))(1−cos(u))
=(1+cos(u))(1−cos(u))
=sin(u)−(1+cos(u))(1−cos(u))+cos(u)sin(u)
sin(u)−(1+cos(u))(1−cos(u))+cos(u)sin(u)=0
Factor sin(u)−(1+cos(u))(1−cos(u))+cos(u)sin(u):(1+cos(u))(sin(u)+cos(u)−1)
sin(u)−(1+cos(u))(1−cos(u))+cos(u)sin(u)
Factor out common term sin(u)=sin(u)(1+cos(u))−(1+cos(u))(1−cos(u))
Factor out common term (1+cos(u))=(1+cos(u))(sin(u)−(1−cos(u)))
Factor sin(u)−(−cos(u)+1):sin(u)+cos(u)−1
sin(u)−(1−cos(u))
−(1−cos(u))=cos(u)−1
−(1−cos(u))
Factor 1−cos(u):−(cos(u)−1)
1−cos(u)
Factor out common term −1=−(cos(u)−1)
=(cos(u)−1)
Refine=cos(u)−1
=sin(u)+cos(u)−1
=(cos(u)+1)(sin(u)+cos(u)−1)
(1+cos(u))(sin(u)+cos(u)−1)=0
Solving each part separately1+cos(u)=0orsin(u)+cos(u)−1=0
1+cos(u)=0:u=π+2πn
1+cos(u)=0
Move 1to the right side
1+cos(u)=0
Subtract 1 from both sides1+cos(u)−1=0−1
Simplifycos(u)=−1
cos(u)=−1
General solutions for cos(u)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=π+2πn
u=π+2πn
sin(u)+cos(u)−1=0:u=2πn,u=2πn+2π​
sin(u)+cos(u)−1=0
Rewrite using trig identities
sin(u)+cos(u)−1
sin(u)+cos(u)=2​sin(u+4π​)
sin(u)+cos(u)
Rewrite as=2​(2​1​sin(u)+2​1​cos(u))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(u)+sin(4π​)cos(u))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(u+4π​)
=−1+2​sin(u+4π​)
−1+2​sin(u+4π​)=0
Move 1to the right side
−1+2​sin(u+4π​)=0
Add 1 to both sides−1+2​sin(u+4π​)+1=0+1
Simplify2​sin(u+4π​)=1
2​sin(u+4π​)=1
Divide both sides by 2​
2​sin(u+4π​)=1
Divide both sides by 2​2​2​sin(u+4π​)​=2​1​
Simplify
2​2​sin(u+4π​)​=2​1​
Simplify 2​2​sin(u+4π​)​:sin(u+4π​)
2​2​sin(u+4π​)​
Cancel the common factor: 2​=sin(u+4π​)
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
sin(u+4π​)=22​​
sin(u+4π​)=22​​
sin(u+4π​)=22​​
General solutions for sin(u+4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u+4π​=4π​+2πn,u+4π​=43π​+2πn
u+4π​=4π​+2πn,u+4π​=43π​+2πn
Solve u+4π​=4π​+2πn:u=2πn
u+4π​=4π​+2πn
Subtract 4π​ from both sidesu+4π​−4π​=4π​+2πn−4π​
Simplifyu=2πn
Solve u+4π​=43π​+2πn:u=2πn+2π​
u+4π​=43π​+2πn
Move 4π​to the right side
u+4π​=43π​+2πn
Subtract 4π​ from both sidesu+4π​−4π​=43π​+2πn−4π​
Simplify
u+4π​−4π​=43π​+2πn−4π​
Simplify u+4π​−4π​:u
u+4π​−4π​
Add similar elements: 4π​−4π​=0
=u
Simplify 43π​+2πn−4π​:2πn+2π​
43π​+2πn−4π​
Group like terms=2πn−4π​+43π​
Combine the fractions −4π​+43π​:2π​
Apply rule ca​±cb​=ca±b​=4−π+3π​
Add similar elements: −π+3π=2π=42π​
Cancel the common factor: 2=2π​
=2πn+2π​
u=2πn+2π​
u=2πn+2π​
u=2πn+2π​
u=2πn,u=2πn+2π​
Combine all the solutionsu=π+2πn,u=2πn,u=2πn+2π​
Substitute back u=2x
2x=π+2πn:x=2π+2πn​
2x=π+2πn
Divide both sides by 2
2x=π+2πn
Divide both sides by 222x​=2π​+22πn​
Simplify
22x​=2π​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π​+22πn​:2π+2πn​
2π​+22πn​
Apply rule ca​±cb​=ca±b​=2π+2πn​
x=2π+2πn​
x=2π+2πn​
x=2π+2πn​
2x=2πn:x=πn
2x=2πn
Divide both sides by 2
2x=2πn
Divide both sides by 222x​=22πn​
Simplifyx=πn
x=πn
2x=2πn+2π​:x=44πn+π​
2x=2πn+2π​
Divide both sides by 2
2x=2πn+2π​
Divide both sides by 222x​=22πn​+22π​​
Simplify
22x​=22πn​+22π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22πn​+22π​​:44πn+π​
22πn​+22π​​
Apply rule ca​±cb​=ca±b​=22πn+2π​​
Join 2πn+2π​:24πn+π​
2πn+2π​
Convert element to fraction: 2πn=22πn2​=22πn⋅2​+2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22πn⋅2+π​
Multiply the numbers: 2⋅2=4=24πn+π​
=224πn+π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅24πn+π​
Multiply the numbers: 2⋅2=4=44πn+π​
x=44πn+π​
x=44πn+π​
x=44πn+π​
x=2π+2πn​,x=πn,x=44πn+π​
Since the equation is undefined for:44πn+π​x=2π+2πn​,x=πn,x=44πn+π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1-cos(4x)=sin(2x)cos(2x)=sin^2(x)sec^2(x)-3tan(x)=5sin(x)=0,4sin(x)=0,2

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2x)+sin(2x)+cos(2x)=sec(2x) ?

    The general solution for tan(2x)+sin(2x)+cos(2x)=sec(2x) is x=(pi+2pin)/2 ,x=pin,x=(4pin+pi)/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024