Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(4k-22)=cos(6k-13)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(4k−22)=cos(6k−13)

Solution

k=204πn+70+π​,k=−44πn+18+π​
+1
Degrees
k=209.53522…∘+36∘n,k=−302.83100…∘−180∘n
Solution steps
sin(4k−22)=cos(6k−13)
Rewrite using trig identities
sin(4k−22)=cos(6k−13)
Use the following identity: cos(x)=sin(2π​−x)sin(4k−22)=sin(2π​−(6k−13))
sin(4k−22)=sin(2π​−(6k−13))
Apply trig inverse properties
sin(4k−22)=sin(2π​−(6k−13))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn4k−22=2π​−(6k−13)+2πn,4k−22=π−(2π​−(6k−13))+2πn
4k−22=2π​−(6k−13)+2πn,4k−22=π−(2π​−(6k−13))+2πn
4k−22=2π​−(6k−13)+2πn:k=204πn+70+π​
4k−22=2π​−(6k−13)+2πn
Expand 2π​−(6k−13)+2πn:2π​−6k+13+2πn
2π​−(6k−13)+2πn
−(6k−13):−6k+13
−(6k−13)
Distribute parentheses=−(6k)−(−13)
Apply minus-plus rules−(−a)=a,−(a)=−a=−6k+13
=2π​−6k+13+2πn
4k−22=2π​−6k+13+2πn
Move 22to the right side
4k−22=2π​−6k+13+2πn
Add 22 to both sides4k−22+22=2π​−6k+13+2πn+22
Simplify
4k−22+22=2π​−6k+13+2πn+22
Simplify 4k−22+22:4k
4k−22+22
Add similar elements: −22+22=0
=4k
Simplify 2π​−6k+13+2πn+22:−6k+2πn+35+2π​
2π​−6k+13+2πn+22
Group like terms=−6k+2πn+2π​+13+22
Add the numbers: 13+22=35=−6k+2πn+35+2π​
4k=−6k+2πn+35+2π​
4k=−6k+2πn+35+2π​
4k=−6k+2πn+35+2π​
Move 6kto the left side
4k=−6k+2πn+35+2π​
Add 6k to both sides4k+6k=−6k+2πn+35+2π​+6k
Simplify10k=2πn+35+2π​
10k=2πn+35+2π​
Divide both sides by 10
10k=2πn+35+2π​
Divide both sides by 101010k​=102πn​+1035​+102π​​
Simplify
1010k​=102πn​+1035​+102π​​
Simplify 1010k​:k
1010k​
Divide the numbers: 1010​=1=k
Simplify 102πn​+1035​+102π​​:204πn+70+π​
102πn​+1035​+102π​​
Apply rule ca​±cb​=ca±b​=102πn+35+2π​​
Join 2πn+35+2π​:24πn+70+π​
2πn+35+2π​
Convert element to fraction: 2πn=22πn2​,35=235⋅2​=22πn⋅2​+235⋅2​+2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22πn⋅2+35⋅2+π​
2πn⋅2+35⋅2+π=4πn+70+π
2πn⋅2+35⋅2+π
Multiply the numbers: 2⋅2=4=4πn+35⋅2+π
Multiply the numbers: 35⋅2=70=4πn+70+π
=24πn+70+π​
=1024πn+70+π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅104πn+70+π​
Multiply the numbers: 2⋅10=20=204πn+70+π​
k=204πn+70+π​
k=204πn+70+π​
k=204πn+70+π​
4k−22=π−(2π​−(6k−13))+2πn:k=−44πn+18+π​
4k−22=π−(2π​−(6k−13))+2πn
Expand π−(2π​−(6k−13))+2πn:π−2π​+6k−13+2πn
π−(2π​−(6k−13))+2πn
−(6k−13):−6k+13
−(6k−13)
Distribute parentheses=−(6k)−(−13)
Apply minus-plus rules−(−a)=a,−(a)=−a=−6k+13
=π−(−6k+13+2π​)+2πn
−(2π​−6k+13):−2π​+6k−13
−(2π​−6k+13)
Distribute parentheses=−(2π​)−(−6k)−(13)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2π​+6k−13
=π−2π​+6k−13+2πn
4k−22=π−2π​+6k−13+2πn
Move 22to the right side
4k−22=π−2π​+6k−13+2πn
Add 22 to both sides4k−22+22=π−2π​+6k−13+2πn+22
Simplify
4k−22+22=π−2π​+6k−13+2πn+22
Simplify 4k−22+22:4k
4k−22+22
Add similar elements: −22+22=0
=4k
Simplify π−2π​+6k−13+2πn+22:6k+2πn+9+π−2π​
π−2π​+6k−13+2πn+22
Group like terms=6k+π+2πn−2π​−13+22
Add/Subtract the numbers: −13+22=9=6k+2πn+9+π−2π​
4k=6k+2πn+9+π−2π​
4k=6k+2πn+9+π−2π​
4k=6k+2πn+9+π−2π​
Move 6kto the left side
4k=6k+2πn+9+π−2π​
Subtract 6k from both sides4k−6k=6k+2πn+9+π−2π​−6k
Simplify−2k=2πn+9+π−2π​
−2k=2πn+9+π−2π​
Divide both sides by −2
−2k=2πn+9+π−2π​
Divide both sides by −2−2−2k​=−22πn​+−29​+−2π​−−22π​​
Simplify
−2−2k​=−22πn​+−29​+−2π​−−22π​​
Simplify −2−2k​:k
−2−2k​
Apply the fraction rule: −b−a​=ba​=22k​
Divide the numbers: 22​=1=k
Simplify −22πn​+−29​+−2π​−−22π​​:−44πn+18+π​
−22πn​+−29​+−2π​−−22π​​
Apply rule ca​±cb​=ca±b​=−22πn+9+π−2π​​
Apply the fraction rule: −ba​=−ba​=−22πn+9+π−2π​​
Join 2πn+9+π−2π​:24πn+18+π​
2πn+9+π−2π​
Convert element to fraction: 2πn=22πn2​,9=29⋅2​,π=2π2​=22πn⋅2​+29⋅2​+2π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22πn⋅2+9⋅2+π2−π​
2πn⋅2+9⋅2+π2−π=4πn+18+π
2πn⋅2+9⋅2+π2−π
Add similar elements: 2π−π=π=2⋅2πn+9⋅2+π
Multiply the numbers: 2⋅2=4=4πn+9⋅2+π
Multiply the numbers: 9⋅2=18=4πn+18+π
=24πn+18+π​
=−224πn+π+18​​
Simplify 224πn+18+π​​:44πn+18+π​
224πn+18+π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅24πn+18+π​
Multiply the numbers: 2⋅2=4=44πn+18+π​
=−44πn+π+18​
=−44πn+18+π​
k=−44πn+18+π​
k=−44πn+18+π​
k=−44πn+18+π​
k=204πn+70+π​,k=−44πn+18+π​
k=204πn+70+π​,k=−44πn+18+π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x)csc^2(x)=2cos(2x)2tan(x)sin(x)=sqrt(3)tan(x)tan(x)=-sqrt(2)+1cos(x)=0.914cos^2(x)+1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(4k-22)=cos(6k-13) ?

    The general solution for sin(4k-22)=cos(6k-13) is k=(4pin+70+pi}{20},k=-\frac{4pin+18+pi)/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024