Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2t)=cos(t),0<= t<2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2t)=cos(t),0≤t<2π

Solution

t=0,t=32π​,t=34π​
+1
Degrees
t=0∘,t=120∘,t=240∘
Solution steps
cos(2t)=cos(t),0≤t<2π
Subtract cos(t) from both sidescos(2t)−cos(t)=0
Rewrite using trig identities
cos(2t)−cos(t)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(22t+t​)sin(22t−t​)
Simplify −2sin(22t+t​)sin(22t−t​):−2sin(23t​)sin(2t​)
−2sin(22t+t​)sin(22t−t​)
Add similar elements: 2t+t=3t=−2sin(23t​)sin(22t−t​)
Add similar elements: 2t−t=t=−2sin(23t​)sin(2t​)
=−2sin(23t​)sin(2t​)
−2sin(23t​)sin(2t​)=0
Solving each part separatelysin(23t​)=0orsin(2t​)=0
sin(23t​)=0,0≤t<2π:t=0,t=32π​,t=34π​
sin(23t​)=0,0≤t<2π
General solutions for sin(23t​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
23t​=0+2πn,23t​=π+2πn
23t​=0+2πn,23t​=π+2πn
Solve 23t​=0+2πn:t=34πn​
23t​=0+2πn
0+2πn=2πn23t​=2πn
Multiply both sides by 2
23t​=2πn
Multiply both sides by 222⋅3t​=2⋅2πn
Simplify3t=4πn
3t=4πn
Divide both sides by 3
3t=4πn
Divide both sides by 333t​=34πn​
Simplifyt=34πn​
t=34πn​
Solve 23t​=π+2πn:t=32π​+34πn​
23t​=π+2πn
Multiply both sides by 2
23t​=π+2πn
Multiply both sides by 222⋅3t​=2π+2⋅2πn
Simplify3t=2π+4πn
3t=2π+4πn
Divide both sides by 3
3t=2π+4πn
Divide both sides by 333t​=32π​+34πn​
Simplifyt=32π​+34πn​
t=32π​+34πn​
t=34πn​,t=32π​+34πn​
Solutions for the range 0≤t<2πt=0,t=32π​,t=34π​
sin(2t​)=0,0≤t<2π:t=0
sin(2t​)=0,0≤t<2π
General solutions for sin(2t​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2t​=0+2πn,2t​=π+2πn
2t​=0+2πn,2t​=π+2πn
Solve 2t​=0+2πn:t=4πn
2t​=0+2πn
0+2πn=2πn2t​=2πn
Multiply both sides by 2
2t​=2πn
Multiply both sides by 222t​=2⋅2πn
Simplifyt=4πn
t=4πn
Solve 2t​=π+2πn:t=2π+4πn
2t​=π+2πn
Multiply both sides by 2
2t​=π+2πn
Multiply both sides by 222t​=2π+2⋅2πn
Simplifyt=2π+4πn
t=2π+4πn
t=4πn,t=2π+4πn
Solutions for the range 0≤t<2πt=0
Combine all the solutionst=0,t=32π​,t=34π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)=sin(-(2pi)/3)sin(x)=(23/24)tan(θ)=-5/46tan(θ)=-2sqrt(3)cot(θ)=0.6

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(2t)=cos(t),0<= t<2pi ?

    The general solution for cos(2t)=cos(t),0<= t<2pi is t=0,t=(2pi)/3 ,t=(4pi)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024