Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

108cos(0.5a)=sin(90+a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

108cos(0.5a)=sin(90∘+a)

Solution

a=0.51.58005…+360∘n​,a=0.5−1.58005…+360∘n​,a=5∅10​
+1
Radians
a=0+0.51.58005…+2π​n,a=0+0.5−1.58005…+2π​n,a=5∅10​
Solution steps
108cos(0.5a)=sin(90∘+a)
Rewrite using trig identities
108cos(0.5a)=sin(90∘+a)
Rewrite using trig identities
sin(90∘+a)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(90∘)cos(a)+cos(90∘)sin(a)
Simplify sin(90∘)cos(a)+cos(90∘)sin(a):cos(a)
sin(90∘)cos(a)+cos(90∘)sin(a)
sin(90∘)cos(a)=cos(a)
sin(90∘)cos(a)
Simplify sin(90∘):1
sin(90∘)
Use the following trivial identity:sin(90∘)=1
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=1⋅cos(a)
Multiply: 1⋅cos(a)=cos(a)=cos(a)
cos(90∘)sin(a)=0
cos(90∘)sin(a)
Simplify cos(90∘):0
cos(90∘)
Use the following trivial identity:cos(90∘)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅sin(a)
Apply rule 0⋅a=0=0
=cos(a)+0
cos(a)+0=cos(a)=cos(a)
=cos(a)
108cos(0.5a)=cos(a)
108cos(0.5a)=cos(a)
Subtract cos(a) from both sides108cos(0.5a)−cos(a)=0
Let: u=0.5a108cos(u)−cos(2u)=0
Rewrite using trig identities
−cos(2u)+108cos(u)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=−(2cos2(u)−1)+108cos(u)
−(2cos2(u)−1):−2cos2(u)+1
−(2cos2(u)−1)
Distribute parentheses=−(2cos2(u))−(−1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2cos2(u)+1
=−2cos2(u)+1+108cos(u)
1+108cos(u)−2cos2(u)=0
Solve by substitution
1+108cos(u)−2cos2(u)=0
Let: cos(u)=u1+108u−2u2=0
1+108u−2u2=0:u=−2−54+2918​​,u=254+2918​​
1+108u−2u2=0
Write in the standard form ax2+bx+c=0−2u2+108u+1=0
Solve with the quadratic formula
−2u2+108u+1=0
Quadratic Equation Formula:
For a=−2,b=108,c=1u1,2​=2(−2)−108±1082−4(−2)⋅1​​
u1,2​=2(−2)−108±1082−4(−2)⋅1​​
1082−4(−2)⋅1​=22918​
1082−4(−2)⋅1​
Apply rule −(−a)=a=1082+4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=1082+8​
1082=11664=11664+8​
Add the numbers: 11664+8=11672=11672​
Prime factorization of 11672:23⋅1459
11672
11672divides by 211672=5836⋅2=2⋅5836
5836divides by 25836=2918⋅2=2⋅2⋅2918
2918divides by 22918=1459⋅2=2⋅2⋅2⋅1459
2,1459 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅1459
=23⋅1459
=23⋅1459​
Apply exponent rule: ab+c=ab⋅ac=22⋅2⋅1459​
Apply radical rule: nab​=na​nb​=22​2⋅1459​
Apply radical rule: nan​=a22​=2=22⋅1459​
Refine=22918​
u1,2​=2(−2)−108±22918​​
Separate the solutionsu1​=2(−2)−108+22918​​,u2​=2(−2)−108−22918​​
u=2(−2)−108+22918​​:−2−54+2918​​
2(−2)−108+22918​​
Remove parentheses: (−a)=−a=−2⋅2−108+22918​​
Multiply the numbers: 2⋅2=4=−4−108+22918​​
Apply the fraction rule: −ba​=−ba​=−4−108+22918​​
Cancel 4−108+22918​​:22918​−54​
4−108+22918​​
Factor −108+22918​:2(−54+2918​)
−108+22918​
Rewrite as=−2⋅54+22918​
Factor out common term 2=2(−54+2918​)
=42(−54+2918​)​
Cancel the common factor: 2=2−54+2918​​
=−22918​−54​
=−2−54+2918​​
u=2(−2)−108−22918​​:254+2918​​
2(−2)−108−22918​​
Remove parentheses: (−a)=−a=−2⋅2−108−22918​​
Multiply the numbers: 2⋅2=4=−4−108−22918​​
Apply the fraction rule: −b−a​=ba​−108−22918​=−(108+22918​)=4108+22918​​
Factor 108+22918​:2(54+2918​)
108+22918​
Rewrite as=2⋅54+22918​
Factor out common term 2=2(54+2918​)
=42(54+2918​)​
Cancel the common factor: 2=254+2918​​
The solutions to the quadratic equation are:u=−2−54+2918​​,u=254+2918​​
Substitute back u=cos(u)cos(u)=−2−54+2918​​,cos(u)=254+2918​​
cos(u)=−2−54+2918​​,cos(u)=254+2918​​
cos(u)=−2−54+2918​​:u=arccos(−2−54+2918​​)+360∘n,u=−arccos(−2−54+2918​​)+360∘n
cos(u)=−2−54+2918​​
Apply trig inverse properties
cos(u)=−2−54+2918​​
General solutions for cos(u)=−2−54+2918​​cos(x)=−a⇒x=arccos(−a)+360∘n,x=−arccos(−a)+360∘nu=arccos(−2−54+2918​​)+360∘n,u=−arccos(−2−54+2918​​)+360∘n
u=arccos(−2−54+2918​​)+360∘n,u=−arccos(−2−54+2918​​)+360∘n
cos(u)=254+2918​​:No Solution
cos(u)=254+2918​​
−1≤cos(x)≤1NoSolution
Combine all the solutionsu=arccos(−2−54+2918​​)+360∘n,u=−arccos(−2−54+2918​​)+360∘n
Substitute back u=0.5a
0.5a=arccos(−2−54+2918​​)+360∘n:a=0.5arccos(−2−54+2918​​)+360∘n​
0.5a=arccos(−2−54+2918​​)+360∘n
Divide both sides by 0.5
0.5a=arccos(−2−54+2918​​)+360∘n
Divide both sides by 0.50.50.5a​=0.5arccos(−2−54+2918​​)​+0.5360∘n​
Simplify
0.50.5a​=0.5arccos(−2−54+2918​​)​+0.5360∘n​
Simplify 0.50.5a​:a
0.50.5a​
Cancel the common factor: 0.5=a
Simplify 0.5arccos(−2−54+2918​​)​+0.5360∘n​:0.5arccos(−2−54+2918​​)+360∘n​
0.5arccos(−2−54+2918​​)​+0.5360∘n​
Apply rule ca​±cb​=ca±b​=0.5arccos(−22918​−54​)+360∘n​
a=0.5arccos(−2−54+2918​​)+360∘n​
a=0.5arccos(−2−54+2918​​)+360∘n​
a=0.5arccos(−2−54+2918​​)+360∘n​
0.5a=−arccos(−2−54+2918​​)+360∘n:a=0.5−arccos(−2−54+2918​​)+360∘n​
0.5a=−arccos(−2−54+2918​​)+360∘n
Divide both sides by 0.5
0.5a=−arccos(−2−54+2918​​)+360∘n
Divide both sides by 0.50.50.5a​=−0.5arccos(−2−54+2918​​)​+0.5360∘n​
Simplify
0.50.5a​=−0.5arccos(−2−54+2918​​)​+0.5360∘n​
Simplify 0.50.5a​:a
0.50.5a​
Cancel the common factor: 0.5=a
Simplify −0.5arccos(−2−54+2918​​)​+0.5360∘n​:0.5−arccos(−2−54+2918​​)+360∘n​
−0.5arccos(−2−54+2918​​)​+0.5360∘n​
Apply rule ca​±cb​=ca±b​=0.5−arccos(−22918​−54​)+360∘n​
a=0.5−arccos(−2−54+2918​​)+360∘n​
a=0.5−arccos(−2−54+2918​​)+360∘n​
a=0.5−arccos(−2−54+2918​​)+360∘n​
0.5a=∅:a=5∅10​
0.5a=∅
Multiply both sides by 10
0.5a=∅
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 100.5a⋅10=∅10
Refine5a=∅10
5a=∅10
Divide both sides by 5
5a=∅10
Divide both sides by 555a​=5∅10​
Simplifya=5∅10​
a=5∅10​
a=0.5arccos(−2−54+2918​​)+360∘n​,a=0.5−arccos(−2−54+2918​​)+360∘n​,a=5∅10​
Since the equation is undefined for:5∅10​a=0.5arccos(−2−54+2918​​)+360∘n​,a=0.5−arccos(−2−54+2918​​)+360∘n​,a=5∅10​
Show solutions in decimal forma=0.51.58005…+360∘n​,a=0.5−1.58005…+360∘n​,a=5∅10​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(a)= 7/25cos(x)= 11/14cot(38)=tan(2x)cos(θ)=0.8126cos(θ)=-4/5 ,tan(θ)<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024