Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1-8sin^2(x)cos^2(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−8sin2(x)cos2(x)=0

Solution

x=85π​+πn,x=87π​+πn,x=8π​+πn,x=83π​+πn
+1
Degrees
x=112.5∘+180∘n,x=157.5∘+180∘n,x=22.5∘+180∘n,x=67.5∘+180∘n
Solution steps
1−8sin2(x)cos2(x)=0
Factor 1−8sin2(x)cos2(x):(22​sin(x)cos(x)+1)(−22​sin(x)cos(x)+1)
1−8sin2(x)cos2(x)
Rewrite 1−8sin2(x)cos2(x) as 1−(8​sin(x)cos(x))2
1−8sin2(x)cos2(x)
Apply radical rule: a=(a​)28=(8​)2=1−(8​)2sin2(x)cos2(x)
Apply exponent rule: ambm=(ab)m(8​)2sin2(x)cos2(x)=(8​sin(x)cos(x))2=1−(8​sin(x)cos(x))2
=1−(8​sin(x)cos(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)1−(8​sin(x)cos(x))2=(8​sin(x)cos(x)+1)(−8​sin(x)cos(x)+1)=(8​sin(x)cos(x)+1)(−8​sin(x)cos(x)+1)
Refine=(22​sin(x)cos(x)+1)(−22​sin(x)cos(x)+1)
(22​sin(x)cos(x)+1)(−22​sin(x)cos(x)+1)=0
Solving each part separately22​sin(x)cos(x)+1=0or−22​sin(x)cos(x)+1=0
22​sin(x)cos(x)+1=0:x=85π​+πn,x=87π​+πn
22​sin(x)cos(x)+1=0
Rewrite using trig identities
22​sin(x)cos(x)+1
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)=1+sin(2x)2​
1+sin(2x)2​=0
Move 1to the right side
1+sin(2x)2​=0
Subtract 1 from both sides1+sin(2x)2​−1=0−1
Simplifysin(2x)2​=−1
sin(2x)2​=−1
Divide both sides by 2​
sin(2x)2​=−1
Divide both sides by 2​2​sin(2x)2​​=2​−1​
Simplify
2​sin(2x)2​​=2​−1​
Simplify 2​sin(2x)2​​:sin(2x)
2​sin(2x)2​​
Cancel the common factor: 2​=sin(2x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(2x)=−22​​
sin(2x)=−22​​
sin(2x)=−22​​
General solutions for sin(2x)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=45π​+2πn,2x=47π​+2πn
2x=45π​+2πn,2x=47π​+2πn
Solve 2x=45π​+2πn:x=85π​+πn
2x=45π​+2πn
Divide both sides by 2
2x=45π​+2πn
Divide both sides by 222x​=245π​​+22πn​
Simplify
22x​=245π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 245π​​+22πn​:85π​+πn
245π​​+22πn​
245π​​=85π​
245π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅25π​
Multiply the numbers: 4⋅2=8=85π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=85π​+πn
x=85π​+πn
x=85π​+πn
x=85π​+πn
Solve 2x=47π​+2πn:x=87π​+πn
2x=47π​+2πn
Divide both sides by 2
2x=47π​+2πn
Divide both sides by 222x​=247π​​+22πn​
Simplify
22x​=247π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 247π​​+22πn​:87π​+πn
247π​​+22πn​
247π​​=87π​
247π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅27π​
Multiply the numbers: 4⋅2=8=87π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=87π​+πn
x=87π​+πn
x=87π​+πn
x=87π​+πn
x=85π​+πn,x=87π​+πn
−22​sin(x)cos(x)+1=0:x=8π​+πn,x=83π​+πn
−22​sin(x)cos(x)+1=0
Rewrite using trig identities
−22​sin(x)cos(x)+1
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)=1−sin(2x)2​
1−sin(2x)2​=0
Move 1to the right side
1−sin(2x)2​=0
Subtract 1 from both sides1−sin(2x)2​−1=0−1
Simplify−sin(2x)2​=−1
−sin(2x)2​=−1
Divide both sides by −2​
−sin(2x)2​=−1
Divide both sides by −2​−2​−sin(2x)2​​=−2​−1​
Simplify
−2​−sin(2x)2​​=−2​−1​
Simplify −2​−sin(2x)2​​:sin(2x)
−2​−sin(2x)2​​
Apply the fraction rule: −b−a​=ba​=2​sin(2x)2​​
Cancel the common factor: 2​=sin(2x)
Simplify −2​−1​:22​​
−2​−1​
Apply the fraction rule: −b−a​=ba​=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
sin(2x)=22​​
sin(2x)=22​​
sin(2x)=22​​
General solutions for sin(2x)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=4π​+2πn,2x=43π​+2πn
2x=4π​+2πn,2x=43π​+2πn
Solve 2x=4π​+2πn:x=8π​+πn
2x=4π​+2πn
Divide both sides by 2
2x=4π​+2πn
Divide both sides by 222x​=24π​​+22πn​
Simplify
22x​=24π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 24π​​+22πn​:8π​+πn
24π​​+22πn​
24π​​=8π​
24π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅2π​
Multiply the numbers: 4⋅2=8=8π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=8π​+πn
x=8π​+πn
x=8π​+πn
x=8π​+πn
Solve 2x=43π​+2πn:x=83π​+πn
2x=43π​+2πn
Divide both sides by 2
2x=43π​+2πn
Divide both sides by 222x​=243π​​+22πn​
Simplify
22x​=243π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 243π​​+22πn​:83π​+πn
243π​​+22πn​
243π​​=83π​
243π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅23π​
Multiply the numbers: 4⋅2=8=83π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=83π​+πn
x=83π​+πn
x=83π​+πn
x=83π​+πn
x=8π​+πn,x=83π​+πn
Combine all the solutionsx=85π​+πn,x=87π​+πn,x=8π​+πn,x=83π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6tan^2(x)-tan(x)-12=0sin(θ)=0.3642=-4-3csc(x)1-4cos^2(x)=0tan(θ)=-9/7
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024