Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(4x)-3cos(2x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(4x)−3cos(2x)−1=0

Solution

x=3π​+πn,x=32π​+πn
+1
Degrees
x=60∘+180∘n,x=120∘+180∘n
Solution steps
cos(4x)−3cos(2x)−1=0
Rewrite using trig identities
−1+cos(4x)−3cos(2x)
cos(4x)=2cos2(2x)−1
cos(4x)
Rewrite as=cos(2⋅2x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1cos(2⋅2x)=2cos2(2x)−1=2cos2(2x)−1
=−1+2cos2(2x)−1−3cos(2x)
Simplify −1+2cos2(2x)−1−3cos(2x):2cos2(2x)−3cos(2x)−2
−1+2cos2(2x)−1−3cos(2x)
Group like terms=2cos2(2x)−3cos(2x)−1−1
Subtract the numbers: −1−1=−2=2cos2(2x)−3cos(2x)−2
=2cos2(2x)−3cos(2x)−2
−2+2cos2(2x)−3cos(2x)=0
Solve by substitution
−2+2cos2(2x)−3cos(2x)=0
Let: cos(2x)=u−2+2u2−3u=0
−2+2u2−3u=0:u=2,u=−21​
−2+2u2−3u=0
Write in the standard form ax2+bx+c=02u2−3u−2=0
Solve with the quadratic formula
2u2−3u−2=0
Quadratic Equation Formula:
For a=2,b=−3,c=−2u1,2​=2⋅2−(−3)±(−3)2−4⋅2(−2)​​
u1,2​=2⋅2−(−3)±(−3)2−4⋅2(−2)​​
(−3)2−4⋅2(−2)​=5
(−3)2−4⋅2(−2)​
Apply rule −(−a)=a=(−3)2+4⋅2⋅2​
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32+4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: nan​=a52​=5=5
u1,2​=2⋅2−(−3)±5​
Separate the solutionsu1​=2⋅2−(−3)+5​,u2​=2⋅2−(−3)−5​
u=2⋅2−(−3)+5​:2
2⋅2−(−3)+5​
Apply rule −(−a)=a=2⋅23+5​
Add the numbers: 3+5=8=2⋅28​
Multiply the numbers: 2⋅2=4=48​
Divide the numbers: 48​=2=2
u=2⋅2−(−3)−5​:−21​
2⋅2−(−3)−5​
Apply rule −(−a)=a=2⋅23−5​
Subtract the numbers: 3−5=−2=2⋅2−2​
Multiply the numbers: 2⋅2=4=4−2​
Apply the fraction rule: b−a​=−ba​=−42​
Cancel the common factor: 2=−21​
The solutions to the quadratic equation are:u=2,u=−21​
Substitute back u=cos(2x)cos(2x)=2,cos(2x)=−21​
cos(2x)=2,cos(2x)=−21​
cos(2x)=2:No Solution
cos(2x)=2
−1≤cos(x)≤1NoSolution
cos(2x)=−21​:x=3π​+πn,x=32π​+πn
cos(2x)=−21​
General solutions for cos(2x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x=32π​+2πn,2x=34π​+2πn
2x=32π​+2πn,2x=34π​+2πn
Solve 2x=32π​+2πn:x=3π​+πn
2x=32π​+2πn
Divide both sides by 2
2x=32π​+2πn
Divide both sides by 222x​=232π​​+22πn​
Simplify
22x​=232π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 232π​​+22πn​:3π​+πn
232π​​+22πn​
232π​​=3π​
232π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π​
Multiply the numbers: 3⋅2=6=62π​
Cancel the common factor: 2=3π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=3π​+πn
x=3π​+πn
x=3π​+πn
x=3π​+πn
Solve 2x=34π​+2πn:x=32π​+πn
2x=34π​+2πn
Divide both sides by 2
2x=34π​+2πn
Divide both sides by 222x​=234π​​+22πn​
Simplify
22x​=234π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 234π​​+22πn​:32π​+πn
234π​​+22πn​
234π​​=32π​
234π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅24π​
Multiply the numbers: 3⋅2=6=64π​
Cancel the common factor: 2=32π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=32π​+πn
x=32π​+πn
x=32π​+πn
x=32π​+πn
x=3π​+πn,x=32π​+πn
Combine all the solutionsx=3π​+πn,x=32π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

7sin(x)+2=0sin(x+30)=cos(x+60)cos(5x+40)= 3/5cos(4x)+cos(2x)+1=0sin(2x)=0.3,-180\circ <= x<= 180

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(4x)-3cos(2x)-1=0 ?

    The general solution for cos(4x)-3cos(2x)-1=0 is x= pi/3+pin,x=(2pi)/3+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024