Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1.04cos^2(θ)+0.102cos(θ)-0.935=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1.04cos2(θ)+0.102cos(θ)−0.935=0

Solution

θ=0.45009…+2πn,θ=2π−0.45009…+2πn,θ=3.08648…+2πn,θ=−3.08648…+2πn
+1
Degrees
θ=25.78862…∘+360∘n,θ=334.21137…∘+360∘n,θ=176.84271…∘+360∘n,θ=−176.84271…∘+360∘n
Solution steps
1.04cos2(θ)+0.102cos(θ)−0.935=0
Solve by substitution
1.04cos2(θ)+0.102cos(θ)−0.935=0
Let: cos(θ)=u1.04u2+0.102u−0.935=0
1.04u2+0.102u−0.935=0:u=1040−51+975001​​,u=−104051+975001​​
1.04u2+0.102u−0.935=0
Multiply both sides by 1000
1.04u2+0.102u−0.935=0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 3digits to the right of the decimal point, therefore multiply by 10001.04u2⋅1000+0.102u⋅1000−0.935⋅1000=0⋅1000
Refine1040u2+102u−935=0
1040u2+102u−935=0
Solve with the quadratic formula
1040u2+102u−935=0
Quadratic Equation Formula:
For a=1040,b=102,c=−935u1,2​=2⋅1040−102±1022−4⋅1040(−935)​​
u1,2​=2⋅1040−102±1022−4⋅1040(−935)​​
1022−4⋅1040(−935)​=2975001​
1022−4⋅1040(−935)​
Apply rule −(−a)=a=1022+4⋅1040⋅935​
Multiply the numbers: 4⋅1040⋅935=3889600=1022+3889600​
1022=10404=10404+3889600​
Add the numbers: 10404+3889600=3900004=3900004​
Prime factorization of 3900004:22⋅17⋅83⋅691
3900004
=22⋅17⋅83⋅691​
Apply radical rule: =22​17⋅83⋅691​
Apply radical rule: 22​=2=217⋅83⋅691​
Refine=2975001​
u1,2​=2⋅1040−102±2975001​​
Separate the solutionsu1​=2⋅1040−102+2975001​​,u2​=2⋅1040−102−2975001​​
u=2⋅1040−102+2975001​​:1040−51+975001​​
2⋅1040−102+2975001​​
Multiply the numbers: 2⋅1040=2080=2080−102+2975001​​
Factor −102+2975001​:2(−51+975001​)
−102+2975001​
Rewrite as=−2⋅51+2975001​
Factor out common term 2=2(−51+975001​)
=20802(−51+975001​)​
Cancel the common factor: 2=1040−51+975001​​
u=2⋅1040−102−2975001​​:−104051+975001​​
2⋅1040−102−2975001​​
Multiply the numbers: 2⋅1040=2080=2080−102−2975001​​
Factor −102−2975001​:−2(51+975001​)
−102−2975001​
Rewrite as=−2⋅51−2975001​
Factor out common term 2=−2(51+975001​)
=−20802(51+975001​)​
Cancel the common factor: 2=−104051+975001​​
The solutions to the quadratic equation are:u=1040−51+975001​​,u=−104051+975001​​
Substitute back u=cos(θ)cos(θ)=1040−51+975001​​,cos(θ)=−104051+975001​​
cos(θ)=1040−51+975001​​,cos(θ)=−104051+975001​​
cos(θ)=1040−51+975001​​:θ=arccos(1040−51+975001​​)+2πn,θ=2π−arccos(1040−51+975001​​)+2πn
cos(θ)=1040−51+975001​​
Apply trig inverse properties
cos(θ)=1040−51+975001​​
General solutions for cos(θ)=1040−51+975001​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(1040−51+975001​​)+2πn,θ=2π−arccos(1040−51+975001​​)+2πn
θ=arccos(1040−51+975001​​)+2πn,θ=2π−arccos(1040−51+975001​​)+2πn
cos(θ)=−104051+975001​​:θ=arccos(−104051+975001​​)+2πn,θ=−arccos(−104051+975001​​)+2πn
cos(θ)=−104051+975001​​
Apply trig inverse properties
cos(θ)=−104051+975001​​
General solutions for cos(θ)=−104051+975001​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnθ=arccos(−104051+975001​​)+2πn,θ=−arccos(−104051+975001​​)+2πn
θ=arccos(−104051+975001​​)+2πn,θ=−arccos(−104051+975001​​)+2πn
Combine all the solutionsθ=arccos(1040−51+975001​​)+2πn,θ=2π−arccos(1040−51+975001​​)+2πn,θ=arccos(−104051+975001​​)+2πn,θ=−arccos(−104051+975001​​)+2πn
Show solutions in decimal formθ=0.45009…+2πn,θ=2π−0.45009…+2πn,θ=3.08648…+2πn,θ=−3.08648…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin(θ)+4=0cos(θ)= 5/20-2sin(x)=sqrt(3)sqrt(2)cos(θ)=1,0<= θ<= 360cos(B)= 3/8
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024