Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(a)+cos(2a)=-0.75

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(a)+cos(2a)=−0.75

Solution

a=1.38674…+2πn,a=2π−1.38674…+2πn,a=2.32267…+2πn,a=−2.32267…+2πn
+1
Degrees
a=79.45470…∘+360∘n,a=280.54529…∘+360∘n,a=133.07951…∘+360∘n,a=−133.07951…∘+360∘n
Solution steps
cos(a)+cos(2a)=−0.75
Subtract −0.75 from both sidescos(a)+cos(2a)+0.75=0
Rewrite using trig identities
0.75+cos(2a)+cos(a)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=0.75+2cos2(a)−1+cos(a)
Simplify 0.75+2cos2(a)−1+cos(a):2cos2(a)+cos(a)−0.25
0.75+2cos2(a)−1+cos(a)
Group like terms=2cos2(a)+cos(a)+0.75−1
Add/Subtract the numbers: 0.75−1=−0.25=2cos2(a)+cos(a)−0.25
=2cos2(a)+cos(a)−0.25
−0.25+cos(a)+2cos2(a)=0
Solve by substitution
−0.25+cos(a)+2cos2(a)=0
Let: cos(a)=u−0.25+u+2u2=0
−0.25+u+2u2=0:u=4−1+3​​,u=−41+3​​
−0.25+u+2u2=0
Multiply both sides by 100
−0.25+u+2u2=0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 100−0.25⋅100+u⋅100+2u2⋅100=0⋅100
Refine−25+100u+200u2=0
−25+100u+200u2=0
Write in the standard form ax2+bx+c=0200u2+100u−25=0
Solve with the quadratic formula
200u2+100u−25=0
Quadratic Equation Formula:
For a=200,b=100,c=−25u1,2​=2⋅200−100±1002−4⋅200(−25)​​
u1,2​=2⋅200−100±1002−4⋅200(−25)​​
1002−4⋅200(−25)​=1003​
1002−4⋅200(−25)​
Apply rule −(−a)=a=1002+4⋅200⋅25​
Multiply the numbers: 4⋅200⋅25=20000=1002+20000​
1002=10000=10000+20000​
Add the numbers: 10000+20000=30000=30000​
Prime factorization of 30000:24⋅3⋅54
30000
30000divides by 230000=15000⋅2=2⋅15000
15000divides by 215000=7500⋅2=2⋅2⋅7500
7500divides by 27500=3750⋅2=2⋅2⋅2⋅3750
3750divides by 23750=1875⋅2=2⋅2⋅2⋅2⋅1875
1875divides by 31875=625⋅3=2⋅2⋅2⋅2⋅3⋅625
625divides by 5625=125⋅5=2⋅2⋅2⋅2⋅3⋅5⋅125
125divides by 5125=25⋅5=2⋅2⋅2⋅2⋅3⋅5⋅5⋅25
25divides by 525=5⋅5=2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅5
=24⋅3⋅54
=24⋅54⋅3​
Apply radical rule: nab​=na​nb​=3​24​54​
Apply radical rule: nam​=anm​24​=224​=22=223​54​
Apply radical rule: nam​=anm​54​=524​=52=22⋅523​
Refine=1003​
u1,2​=2⋅200−100±1003​​
Separate the solutionsu1​=2⋅200−100+1003​​,u2​=2⋅200−100−1003​​
u=2⋅200−100+1003​​:4−1+3​​
2⋅200−100+1003​​
Multiply the numbers: 2⋅200=400=400−100+1003​​
Factor −100+1003​:100(−1+3​)
−100+1003​
Rewrite as=−100⋅1+1003​
Factor out common term 100=100(−1+3​)
=400100(−1+3​)​
Cancel the common factor: 100=4−1+3​​
u=2⋅200−100−1003​​:−41+3​​
2⋅200−100−1003​​
Multiply the numbers: 2⋅200=400=400−100−1003​​
Factor −100−1003​:−100(1+3​)
−100−1003​
Rewrite as=−100⋅1−1003​
Factor out common term 100=−100(1+3​)
=−400100(1+3​)​
Cancel the common factor: 100=−41+3​​
The solutions to the quadratic equation are:u=4−1+3​​,u=−41+3​​
Substitute back u=cos(a)cos(a)=4−1+3​​,cos(a)=−41+3​​
cos(a)=4−1+3​​,cos(a)=−41+3​​
cos(a)=4−1+3​​:a=arccos(4−1+3​​)+2πn,a=2π−arccos(4−1+3​​)+2πn
cos(a)=4−1+3​​
Apply trig inverse properties
cos(a)=4−1+3​​
General solutions for cos(a)=4−1+3​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πna=arccos(4−1+3​​)+2πn,a=2π−arccos(4−1+3​​)+2πn
a=arccos(4−1+3​​)+2πn,a=2π−arccos(4−1+3​​)+2πn
cos(a)=−41+3​​:a=arccos(−41+3​​)+2πn,a=−arccos(−41+3​​)+2πn
cos(a)=−41+3​​
Apply trig inverse properties
cos(a)=−41+3​​
General solutions for cos(a)=−41+3​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πna=arccos(−41+3​​)+2πn,a=−arccos(−41+3​​)+2πn
a=arccos(−41+3​​)+2πn,a=−arccos(−41+3​​)+2πn
Combine all the solutionsa=arccos(4−1+3​​)+2πn,a=2π−arccos(4−1+3​​)+2πn,a=arccos(−41+3​​)+2πn,a=−arccos(−41+3​​)+2πn
Show solutions in decimal forma=1.38674…+2πn,a=2π−1.38674…+2πn,a=2.32267…+2πn,a=−2.32267…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=(-12)/(13)8cos(4x)=0cos(3x)+sin(5x)=0tan(θ)=3.8solvefor k,f=x^{2/3}+(10-x^2)^{0.5}sin(kpix)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024