Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan(x)+cos(x))/((1+sin(x)))= 1/(cos(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(1+sin(x))tan(x)+cos(x)​=cos(x)1​

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
(1+sin(x))tan(x)+cos(x)​=cos(x)1​
Subtract cos(x)1​ from both sides1+sin(x)tan(x)+cos(x)​−cos(x)1​=0
Simplify 1+sin(x)tan(x)+cos(x)​−cos(x)1​:cos(x)(sin(x)+1)cos(x)tan(x)+cos2(x)−sin(x)−1​
1+sin(x)tan(x)+cos(x)​−cos(x)1​
Least Common Multiplier of 1+sin(x),cos(x):cos(x)(sin(x)+1)
1+sin(x),cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 1+sin(x) or cos(x)=cos(x)(sin(x)+1)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x)(sin(x)+1)
For 1+sin(x)tan(x)+cos(x)​:multiply the denominator and numerator by cos(x)1+sin(x)tan(x)+cos(x)​=(1+sin(x))cos(x)(tan(x)+cos(x))cos(x)​
For cos(x)1​:multiply the denominator and numerator by sin(x)+1cos(x)1​=cos(x)(sin(x)+1)1⋅(sin(x)+1)​=cos(x)(sin(x)+1)sin(x)+1​
=(1+sin(x))cos(x)(tan(x)+cos(x))cos(x)​−cos(x)(sin(x)+1)sin(x)+1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)(sin(x)+1)(tan(x)+cos(x))cos(x)−(sin(x)+1)​
Expand (tan(x)+cos(x))cos(x)−(sin(x)+1):cos(x)tan(x)+cos2(x)−sin(x)−1
(tan(x)+cos(x))cos(x)−(sin(x)+1)
=cos(x)(tan(x)+cos(x))−(sin(x)+1)
Expand cos(x)(tan(x)+cos(x)):cos(x)tan(x)+cos2(x)
cos(x)(tan(x)+cos(x))
Apply the distributive law: a(b+c)=ab+aca=cos(x),b=tan(x),c=cos(x)=cos(x)tan(x)+cos(x)cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=cos(x)tan(x)+cos2(x)
=cos(x)tan(x)+cos2(x)−(sin(x)+1)
−(sin(x)+1):−sin(x)−1
−(sin(x)+1)
Distribute parentheses=−(sin(x))−(1)
Apply minus-plus rules+(−a)=−a=−sin(x)−1
=cos(x)tan(x)+cos2(x)−sin(x)−1
=cos(x)(sin(x)+1)cos(x)tan(x)+cos2(x)−sin(x)−1​
cos(x)(sin(x)+1)cos(x)tan(x)+cos2(x)−sin(x)−1​=0
g(x)f(x)​=0⇒f(x)=0cos(x)tan(x)+cos2(x)−sin(x)−1=0
Rewrite using trig identities
−1+cos2(x)−sin(x)+cos(x)tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+cos2(x)−sin(x)+cos(x)cos(x)sin(x)​
Simplify −1+cos2(x)−sin(x)+cos(x)cos(x)sin(x)​:−1+cos2(x)
−1+cos2(x)−sin(x)+cos(x)cos(x)sin(x)​
cos(x)cos(x)sin(x)​=sin(x)
cos(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)cos(x)​
Cancel the common factor: cos(x)=sin(x)
=−1+cos2(x)−sin(x)+sin(x)
Add similar elements: −sin(x)+sin(x)=0=−1+cos2(x)
=−1+cos2(x)
−1+cos2(x)=0
Solve by substitution
−1+cos2(x)=0
Let: cos(x)=u−1+u2=0
−1+u2=0:u=1,u=−1
−1+u2=0
Move 1to the right side
−1+u2=0
Add 1 to both sides−1+u2+1=0+1
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
Substitute back u=cos(x)cos(x)=1,cos(x)=−1
cos(x)=1,cos(x)=−1
cos(x)=1:x=2πn
cos(x)=1
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Combine all the solutionsx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)= 4/5 ,0<= θ<= pi/2((tan(x)+2sin(x)))/((tan(x)-2sin(x)))=31-sin(2x)=02cos(3x)+cos(2x)+1=0sin(x)=sin(pi/5)

Frequently Asked Questions (FAQ)

  • What is the general solution for (tan(x)+cos(x))/((1+sin(x)))= 1/(cos(x)) ?

    The general solution for (tan(x)+cos(x))/((1+sin(x)))= 1/(cos(x)) is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024